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When high-dimensional problems are concerned, not much algorithms can break
the curse of dimensionality, and solve them efficiently and reliably. Among those, ten-
sor product algorithms, which implement the idea of separation of variables for multi-
index arrays (tensors), seem to be the most general and also very promising. They orig-
inated in quantum physics and chemistry and descent broadly from the density matrix
renormalization group (DMRG) [12] and matrix product states (MPS) [6] formalisms. The
same tensor formats were recently re-discovered in the numerical linear algebra (NLA)
community as the tensor train (TT) format [9, 8].

Algorithms developed in the quantum physics community are based on the optimi-
sation in tensor formats, that is performed subsequently for all components of a tensor
format (i.e. all sites or modes). The DMRG/MPS schemes are very efficient but very
difficult to analyse, and at the moment only local convergence results for the simplest
algorithm are available [10]. In the NLA community, a common approach is to use a
classical iterative scheme (e.g. GMRES) and enforce the compression to a tensor format
at every step [1]. The formal analysis is quite straightforward, but tensor ranks of the
vectors which span the Krylov subspace grow rapidly with iterations, and the methods
are struggling in practice.

The first attempt to merge classical iterative algorithms and DMRG/MPS methods
wasmade in [13], where the second Krylov vector is used to expand the search space on
the optimisation step. The idea proved to be useful, but the implementation was based
on the fair amount of physical intuition, and the algorithm is not completely justified.

We have recently proposed the AMEn algorithm for linear systems [3, 4], that also
injects the gradient direction in the optimisation step, but in a way that allows to prove
the global convergence of the resulted scheme. The scheme can be easily applied for the
computation of the ground state — the differences to the algorithm of S. White [13] are
emphasized in [5]. TheAMEn scheme is already acknowledged in theNLA community
— for example it was recently applied for the computation of extreme eigenstates [7],
using the block-TT format proposed in [2].

At the moment, AMEn algorithm was applied to solve the Fokker-Planck equation
for the non-Newtonian polymeric flows [4], to the chemical master equation describing
the mesoscopic model of gene regulative networks [4], to solve the Heisenberg model
problem for a periodic spin chain [5], to simulate the NMR spectra of large molecules
(such as ubiquitin) [11]. We aim to extend this framework and the analysis to other
problems of NLA: eigenproblems, time-dependent problems, high-dimensional inter-
polation, and matrix functions; as well as to a wider list of high-dimensional problems.

This is a joint work with Sergey Dolgov at theMax-Planck Institute for Mathematics
in the Sciences, Leipzig, and Ilya Kuprov at the University of Southampton, UK.
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