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0 Introduction

0 Introduction

In quantum mechanics, the standard approach is as follows. We have a Hilbert space
H (e.g. H = L2(R3) for a particle in three dimensions), a Hamiltonian H describing
the dynamics (like a Schrödinder operator H = −∆ + V (x) for a particle moving in a
potential V ), and the standard observables position Qj and momentum Pk described by
self-adjoint operators on H. In Quantum Field Theory very loosely speaking, the main
di�erence concerns these observables. While we still work on Hilbert spaces and with
Hamiltonians, the Qj and Pk are replaced by �eld amplitudes R3 3 x 7→ φ(x) and �eld
momenta R3 3 x 7→ π(x) at a point (or space time event) x. Mathematically they are
usually not described by operators but quadratic forms in H.
There are many reasons to use �elds rather than particles. Often both discriptions are

equivalent and the corresponding �elds admit an interpretation in terms of particles. In
such a situation it is a matter of convenience which pictures should be preferred. But
in some cases the particle point of view (or more generally spoken: the point of view of
ordinary Quantum Mechanics) is too limited and �elds are really needed for a consistent
description. The most prominent example where this happens is Relativistic Quantum
Mechanics which does not exist as a consistent theory. Problematic are in particular the
following issues:

• Locality. Consider particle described by a wave function Ψ ∈ L2(R3) and located in
the region Σ, i.e. suppψ ⊂ Σ. If we follow the usual rule and describe the probability
to detect a particle in Σ ⊂ R3 by

∫
σ |Ψ(x)|2 dx the particle is located in Σ with

certainty. After evolving the wave function freely, and for an arbitrarily short time ε
(e.g. with the relativistic Hamilton operator H =

√
P 2 +m2) the new wave function

ψε has non compact support, i.e. the probability to �nd the particle arbitrarily far
away from its original position is non-zero; cf. Fig. 1. Something like this can also
happen in non-relativistic models. In those cases, however, in�nite speed is not a
conceptual problem. In Special Relativity, on the other hand, it is.

Figure 1: Possible evolution of the amplitude of the wave function for some arbitrary
timestep ε > 0. This however is non-consistent with special relativity, in par-
ticular the speed of light.

• Particle creation. Even in simple setups involving relativistic particles in external
potential particle creation e�ects can occur. If you want to describe this within
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0 Introduction

Figure 2: Klein's result showed that if the potential is of the order of the electron mass,
the barrier is nearly transparent. Also for the dirac equation, more particles
can be re�ected than were sent in because of pair production. The number of
particles not being �x cannot be described by quantum mechanics.

a model which is based on the assumption that the particle number is �xed this
leads to contradictions. A typical example is Klein's paradox where an electron
beam hitting a potential barrier is described. Within relativistic Quantum Mechanics
we get strange behaviours of re�ection and transmission coe�cients which can be
explained if we involve pair creation; cf. Fig. 2. Note that dynamical changes of the
particle number can also occur in non-relativistic models (e.g. in solid state physics).
However, in the relativistic case particle creation and annihilation is the rule even
in simple cases involving only external potentials and no real interaction. It can be
avoided only if we restrict our attention to free particles.

Both problems can be resolved by �elds: Firstly, in Quantum Field Theory we can localize
�elds (observables) rather than wave functions (states), and secondly, �elds are perfectly
capable to describe particle models where the particle number is not �xed.

0.1 About this Document

These lecture notes are based on a course I (MK) have held in autumn and winter
2017/2018 at LMU and TU in Munich. Most of the writing and editing was done by
Frederik vom Ende. In its present form (version 1.0) the document is mostly based on
notes taken directly from the black board or my handwritten preparations. Therefore
this version has a number of defects (my fault not Frederik's): 1. Some important stu�
which I haven't had the time to treat during the lectures (at least not in su�cient detail)
is missing. 2. The organization is sometimes suboptimal. 3. The presentation follows
sometimes (too) closely the literature I have used during preparation (you might call this
plagarism, but this is not a thesis after all . . . ) The plan is to deal with these problems
in future versions. Hence, wherever you have got this �le from, you should look there
regularly for updated versions.
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0.2 Version History

1. Version 1.0: This version. Produced during and immediately after the lectures in
October 2017 and February 2018.
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1 Wightman Quantum Field Theory

1.1 Tempered Distributions

For this section we orient ourselves towards [RS80, Chapter V]. First we introduce the
following standard notation. For f : Rn → C, α, β ∈ Nn0 and Rn 3 x = (x1, . . . , xn) we
denote

xβ = xβ1
1 . . . xβnn |α| =

n∑
j=1

αj Dαf =
∂|α|

∂xα1
1 . . . ∂xαnn

.

De�nition 1.1. The functions of rapid decrease, also called Schwartz functions, is the
set de�ned as

S (Rn) := {f ∈ C∞(Rn,C) | ‖f‖αβ <∞ ∀α,β∈Nn0 }

where ‖f‖αβ = supx∈Rn |xαDβf(x)|.

Remark 1.2 (Locally convex spaces). Let V be a complex vector space V and (pj)j∈I
a family of seminorms3 which separates points, so pj(f) = 0 for all j ∈ I implies f = 0.
Then (V, (pj)j∈I) is said to be a locally convex space. A neighborhood base at 0 ∈ V is
given by the sets

N (j1, . . . , jm; ε) = {f ∈ V | pjk(f) < ε ∀k∈{1,...,m}} ,

which can be regarded as an analogon of the family of ε-balls in Banach spaces. By
translating the N (j1, . . . , jm; ε) within V we can de�ne similar bases at each v ∈ V . In
this way V becomes a topological space, and addition and scalar multilpication become
continuous maps. In other words, V equipped with topology is a topological vector space.
If J = N, then we can de�ne a metric d via

d(f, g) =

∞∑
n=1

2−n
pn(f − g)

1 + pn(f − g)

which generates the same topology as before. If (V, (pn)n∈N) is complete, then it is called
Fréchet space.

The following is an easy application of the neighbourhood de�nition given above.

Lemma 1.3. A linear functional φ : V → C is continuous if and only if one can �nd a
�nite set j1, . . . , jm ∈ I of seminorms and C ∈ R+

0 such that

|φ(x)| ≤ C(pj1(x) + . . .+ pjm(x))

for each x ∈ V .
3A seminorm is a norm which is not de�nite so for f, g ∈ V and λ ∈ C we have p(λf) = |λ|p(f) and
p(f + g) ≤ p(f) + p(g), but p(f) = 0 does not necessarily imply f = 0.

4



1 Wightman Quantum Field Theory

Proposition 1.4 ([RS80], Theorem V.9). The vector space S (Rn) with the natural topol-
ogy given by the seminorms ‖ · ‖α,β is a Fréchet space.

De�nition 1.5. The topological dual4 S ′(Rn) of S (Rn) is called the space of tempered
distributions.

Example 1.6. 1. (δ-distribution). Consider δx : S (Rn) → C for some x ∈ Rn where
f 7→ δx(f) := f(x). We then have

|δx(f)| ≤ sup
y∈Rn

|f(y)| = ‖f‖0,0,

so δx ∈ S ′(Rn). Sometimes it is useful to use the formal expression

f(x) =

∫
Rn

δ(x− y)f(y) dy

which involves the �delta-function� δ. When we do this it is important to keep in mind
that δ really does not exist as a function, i.e. we can not evaluate it at each x ∈ R, we
can only evaluate it �under the integral�.

2. (Measures). Consider a �nite Borel measure µ, so we can de�ne µ : S (Rn)→ C, f 7→∫
Rn
f(x)µ(dx). Continuity of this map can be shown analogously to the δ-distribution

case, so µ ∈ S ′(Rn).

3. Let us look at this special case of the second example. For g ∈ S (Rn) we can de�ne
φg(f) =

∫
Rn
f(x)g(x) dx. Moreover, if g1 6= g2 as functions in S , then φg1 6= φg2 . This

embeds S naturally in S ′.

4. Similarly, for g ∈ Lp(Rn) and p ∈ N we have

φg(f) =

∫
Rn

f(x)g(x) dx

which embeds Lp ↪→ S ′ in a similar way.

Remark 1.7. We equip S ′(Rn) with the weak-∗-topology, which is generated by semi-
norms f 7→ |φ(f)| with φ ∈ S ′(R). Then, the linear subset S (Rn) ⊂ S ′(Rn) is dense and
the embedding ι : S (Rn) → S ′(Rn) is continuous. This suggests extending continuous
maps T : S → S to S ′ as follows. If T : S → S is continuous, then ι ◦ T : S → S ′

is continuous as well by continuity of ι. Since S is dense is S ′, there is at most one
continuous extension of ι◦T . To �nd this extension we look for a continuous S : S → S
with the adjoint S′ : S ′ → S ′, φ 7→ S′(φ) and ask S′ to satisfy S′(φ) = φ ◦ S. Now S′

is well-de�ned and continuous in the weak-∗-topology. Hence S′ is the extension we are
looking for and it can be expressed as Tφ(f) = φ(S(f)). In other words the general strat-
egy is to apply the adjoint of T to the test function (assuming that the double adjoint
becomes T again).

4The topological dual is the space of continuous linear functionals acting on the vector space.
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1 Wightman Quantum Field Theory

Example 1.8. 1. Consider a C∞-function F : Rn → C which derivatives are polynomi-
ally bounded, so there exists C ∈ R+

0 and n ∈ N, such that

|DαF (x)| ≤ C(1 + ‖x‖2)n

for all α ∈ Nn0 . This means for any f ∈ S (Rn) we have Ff ∈ S (Rn) where f 7→ Ff
is continuous. The extension in this case then is given by (Fφ)f = φ(Ff). Then

φg(Ff) =

∫
Rn

g(x)(F (x)f(x)) dx =

∫
Rn

(g(x)F (x))f(x) dx = φFg(f)

2. Weak derivative. To extend Dα to S ′, partial integration implies that (Dαφ)(f) =
(−1)|α|φ(Dαf).

3. For the Fourier transform, we simply have φ̂(f) = φ(f̂).

4. f(·)→ f(· − a) translation, f(·)→ f(A·) with A ∈ GL(n,R)

Example 1.9 (Heaviside function). De�ning

ν(x) =

{
x x ≥ 0

0 x ≤ 0
,

we get the Heaviside function via( d
dx
φν

)
(f) = −φν(f ′) = −

∫ ∞
0

xf ′(x) dx =

∫ ∞
0

f(x) dx,

which implies d
dxφν = φθ, where

θ(x) =

{
x 1 ≥ 0

0 x ≤ 0
.

Further ( d
dx
φθ

)
(f) = −φθ(f ′) = −

∫ ∞
0

f ′(x) dx = f(0)

so d
dxφθ = δ0.

Theorem 1.10 (Regularity theorem for distributions, [RS80] Theorem V.10). Let φ ∈
S ′(Rn). Then φ = Dβg for some polynomially bounded continuous function g : Rn → C

and some β ∈ In+, that is,

φ(f) =

∫
(−1)|β|g(x)(Dβf)(x)ddx

for all f ∈ S (Rn).
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1 Wightman Quantum Field Theory

De�nition 1.11 (Support). We say φ ∈ S ′(Rn) vanishes on an open subset σ ⊂ Rn if
φ(f) = 0 for all f with supp(f) ⊂ σ. Then suppφ is the complement of the largest open
set on which φ vanishes.

De�nition 1.12. Let φ ∈ S ′(Rn). We say x ∈ Rn is a regular point of φ if there exists
an open neighbourhood U of x and g ∈ C∞(U), such that φ(f) = φg(f) for all f with
supp f ⊂ U . The complement of the set of regular points is called the singular support.

An easy example is the singular support of the δ-distribution, which obviously only is
the zero.

Theorem 1.13 (Kernel or nuclear theorem, [RS80] Theorem V.12). Let B(f, g) be a
separately continuous bilinear functional on S (Rn) × S (Rm). Then there is a unique
tempered distribution T ∈ S ′(Rn+m) with B(f, g) = T (f ⊗ g) where

(f ⊗ g)(x1, . . . , xn, xn+1, . . . , xn+m) = f(x1, . . . , xn)g(xn+1, . . . , xn+m).

The result can easily be extended to more than two tensor factors.

Remark 1.14 (Distributions vs. tempered distributions). To get a general distribution
we have to replace Schwartz functions as test functions by smooth compactly supported
functions. One big advantage of this approach is that we can de�ne (general) distributions
on arbitrary open subsets Ω ⊂ Rn, not only on Rn itself. We de�ne

D(Ω) = {f : Ω→ C | f ∈ C∞ and supp f is compact}.

We need this in Chapter 5 where we have to restrict distributions to open sets. The
space D(Ω) can be equipped with a topology which transforms it into a locally convex
space. This is done via an inductive limit construction which we skip here (cf. Sect. V.4
of [RS80] instead). We will directly proceed to the next de�ntion.

De�nition 1.15. A generalized function or distribution is a continuous linear functional
on D(Ω). The space of all continuous linear functionals on D(Ω) is denoted by D ′(Ω).

Since we haven't presented the de�nition of the topology on D(Ω) we give the following
alternative characterization of continuity (cf. Sect. V.4 of [RS80]).

Proposition 1.16. A linear functional T on D(Rn) is continuous if and only if for each
compact K ⊂ Rn, there is a constant C and an integer j such that

|T (f)| ≤ C
∑
|α|≤j

‖Dαf‖∞

for all f ∈ C∞0 (K).

Remark 1.17 (Distributions vs. tempered distributions II). Tempered distributions in
particular are distributions, i.e. S ′(Rn) ⊂ D ′(Rn). They are, however, restricted to be
polynomially bounded at in�nity, while general distributions can have an unrestricted
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1 Wightman Quantum Field Theory

growth. The main advantage of this growth restriction is the possibility to de�ne the
Fourier transform for elements of S ′(Rn); cf. Example 1.8. This is not possible for general
distributions. The latter, however, allow an easy de�nition of restrictions to open subsets
Ω ⊂ Rn. The following statement is readily veri�ed with Proposition 1.16.

Proposition 1.18. Consider open sets A ⊂ Rn and Ω ⊂ A as well as T ∈ D ′(A). The
map T |Ω : D(Ω)→ C is an element of D ′(Ω) called the restriction of T .

Remark 1.19 (Distributions with compact support). A distribution T ∈ D ′(Ω) with
compact support suppT ⊂ Ω can be easily extended to Rn. We only need a smooth
function g satisfying g(x) = 1 on suppT and g(x) = 0 outside Ω. Then we de�ne
T̃ (f) = T (gf) for any test function f ∈ D(Rn). It is easy to see that this is a distribution
in D ′(Rn) and since it is still compactly supported (obviously suppT ⊂ supp T̃ ) we even
get T̃ ⊂ S ′(Rn). Hence we can Fourier transform T (dropping the tilde) and it turns
out that suppT is compact i� T̂ is an entire analytic function. Hence, for a general
distribution T ∈ D ′(Ω) we can choose a compactly supported function f ∈ D(Ω) and

look at fT . Its Fourier transform f̂T then is a smooth function on Rn. This method will
be used in the following de�nition.

De�nition 1.20. Let T, S ∈ D ′. We say that W ∈ D ′ is the product of T and S i� for
each x ∈ Rn, there exists some f ∈ D with f = 1 near x so that for each k ∈ Rn

f̂2W (k) = (2π)−n/2
∫
Rn

f̂T (l)f̂S(k − l) dl

where the integral is absolutely convergent. If such W exists, we say the product of T and
S exists.

Products of distributions will become very important for the discussion of perturbation
theory in Chapter 5.

1.2 Quantum Fields

Let us, as a reminder, quickly go over some notation and results regarding unbounded
operators. For this, we orient ourselves towards [RS80, Chapter VIII]. Here, H is any
separable Hilbert space.

• An operator is a linear map A : D(A)→ H. The subspace D(A) ⊂ H is the domain
of A. If D(A) is dense, then the operator is called densely de�ned.

• The graph of A is de�ned to be Γ(A) = {(x,Ax) |x ∈ D(A)} ⊂ H ×H. Then A is
called closed if Γ(A) ⊂ H×H is closed.

• An operator B is said to be an extension of A if Γ(A) ⊂ Γ(B), we then write A ⊂ B.
• An operator A is closable if it has a closed extension. If A is closable, it has a smallest
closed extension A characterized by Γ(A) = Γ(A). We then say A is the closure of
A.

8



1 Wightman Quantum Field Theory

• Let A be densely de�ned. We de�ne

D(A∗) = {x ∈ H | ∃y∈H∀z∈D(A) : 〈Az, x〉 = 〈z, y〉}

and for x ∈ D(A∗) we de�ne the adjoint via A∗x := y for respective y. Note that
D(A∗) = {0} is possible.

• Let A be densely de�ned. Then A is closable if and only if D(A∗) is densely de�ned.
In that case, A∗ is closed and the double adjoint satis�es A∗∗ = A.

• A is said to be symmetric or hermitian if 〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ D(A). This
is equivalent to D(A) ⊂ D(A∗) with Ax = A∗x for all x ∈ D(A). Also, A is called
self-adjoint if A = A∗. In particular, this means D(A) = D(A∗).

• If A is symmetric, then A ⊂ A∗∗ ⊂ A∗. If A is symmetric and closed, then A =
A∗∗ ⊂ A∗. If A is self-adjoint, then A = A∗∗ = A∗.

• We call A essentially self-adjoint if A is symmetric and A is self-adjoint.

For the topic of quantum �elds, we refer to [RS75, Chapter IX.8].

De�nition 1.21. A quantum �eld is a 4-tuple (H, D,Φ,Ω) consisting of a (separable)
Hilbert space H, a dense subspace D ⊂ H, a C-linear map

Φ : S (Rn)→ L(D,H),

where L(D,H) denotes the linear maps between D and H, and an element Ω ∈ D ⊂ H,
such that the following conditions hold.

(a) D is invariant, so Φ(f)D ⊂ D for all f ∈ S (Rn).

(b) Ω is cyclic which means that the set

D0 := {Φ(f1) . . .Φ(fm)Ω | f1, . . . , fm ∈ S (Rn),m ∈ N} ⊂ D ⊂ H

is dense in H.
(c) Φ(f) is closable for all f ∈ S (Rn).

(d) For all x, y ∈ D, the map

S (Rn) 3 f 7−→ 〈x,Φ(f)y〉

is a tempered distribution.

Note that D0 can replace D since D0 is also dense in H.

De�nition 1.22. A quantum �eld (H, D,Φ,Ω) is called hermitian if 5

Φ(f) = Φ(f)∗|D

and if for f ∈ S (Rn,R) the operator Φ(f) is essentially self-adjoint on D.

5f denotes the complex conjugate of f

9



1 Wightman Quantum Field Theory

Remark 1.23 (Interpretation). A hermitian quatum �eld describes a special observable,
or more precisely a whole family of observables. To understand this remark a bit better
let us pretend that we can write Φ(f) as

Φ(f) =

∫
R

f(x)Φ(x) dx (1.1)

with self-adjoint operators Φ(x), x ∈ R. Note that this is usually not possible and we will
discuss in Ch. 2 how Eq. (1.1) can be interpreted in a mathematical rigorous way. For now
we just look at the operator-valued �eld Φ(x) as a formal expression for an operator-
valued distribution in the same way as the delta-function δ(x) is a formal expression
for the delta-distribution δ0. In doing so we can look at Φ(x) as the observable which
measures the �eld amplitude in x ∈ Rn. The smeared out version Φ(f) from Eq. (1.1)
can then be regarded as the averaged �eld amplitude with averaging function f . This
interpretation makes it very clear that the Φ(f) are local observables, i.e. they can be
measured in any region containing the support of f .
To keep this interpretation, self-adjointness of Φ(f) for real-valued f is mandatory.

Mathematically, however, this self-adjointness condition is often annoying, since it is
di�cult to prove. Most others drop it therefore and accept hermitian quantum �elds
where the Φ(f) are really only hermitian. We will see in the next section why this can
be advantageous.

Remark 1.24. Up to now we can generalize everything to manifolds by replacing S (Rn)
with

D(M) = {f : M → C | f is C∞ and compactly supported}

for some C∞-manifold M .

Remark 1.25 (Poincaré group). The de�nitions presented so far are fairly general and
lack in particular any dynamical content. This will change now, when we study quantum
�elds in Minkowski space. For that, let us have a short recap on some concpets and
notations.

• The Minkowski metric on R4 is given by

η(v, w) = v0w0 −
3∑
j=1

vjwj .

• The Lorentz group is de�ned to be

O(3, 1) = {Λ ∈ GL(4,R) | η(Λv,Λw) = η(v, w)}.

The restricted Lorentz group then is

SO↑(1, 3) = {Λ ∈ O(3, 1) | det Λ = 1, 〈e0,Λe0〉 > 0}.

10



1 Wightman Quantum Field Theory

• The restricted Poincaré group P↑+ is the semi-direct product R4 o SO↑(1, 3). Hence

P↑+ is the set of pairs (a,Λ) where a ∈ R4 and Λ ∈ SO↑(1, 3), and the group operation
is

(a,Λ1)(b,Λ2) = (a+ Λ1b,Λ1Λ2).

The Poincaré group describes transformations from one inertial system into another
by the coordinate transformation v 7→ a+ Λv.

• Now assume that P↑+ 3 (a,Λ) 7→ U(a,Λ) ∈ U(H), with the unitary group U(H) on

H, is a strongly continuous6, unitary representation of P↑+ onH. By strong continuity
we can de�ne generators of the translations

Pjξ = −i d

dλ
U(λej ,1)ξ

∣∣∣∣
λ=0

for j = 0, . . . , 3 with standard basis (ej)j of R
4. Here ξ ∈ H is chosen such that the

limit λ→ 0 exists. Note that U(λej ,1)ξ is a time translation for j = 0 and a space
translation if j = 1, 2, 3. Hence P0 is the Hamiltonian and P1, . . . , P3 are momentum
operators. With an arbitrary a ∈ R4 we get

U(a,1) = exp
(
i

3∑
j=0

ajPj

)
. (1.2)

• If a = Λe0 with a Lorentz transfomation Λ, the generator Pa of the one parameter
group R 3 t 7→ U(ta,1) ∈ U(H) is given by

Pa = U(0,Λ)P0U(0,Λ)∗ =
3∑
j=0

ajPj

In other words, Pa is the Hamiltonian the inertial observer with four-velocity a is
seeing. The Lorentz transformation Λ describes the transition from �our� intertial
system (i.e. where we are at rest) into the one of observer a. Please note that ac-
cording to this reasoning the representation U(a,Λ) does not only describes the
transition between inertial systems, but also contains the complete description of
the dynamical structure of our theory.

• Since the translations form an abelian subgroup, the unitaries U(a,1) mutually
commute and can therefore be jointly �diagonalized�. More precisely, by the spectral
theorem ([RS80], Ch. VII and Sec. VIII.3), there is a projection valued measure7

E : B(R4)→ B(H) Σ 7−→ E(Σ)

6This means that P↑+ 3 (α,Λ) 7→ U(α,Λ)ξ ∈ H is continuous for all ξ ∈ H.
7Here, B(R4) denotes the σ-algebra of Borel subsets of R4 and B(H) are the bounded linear operators
on H.
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1 Wightman Quantum Field Theory

on R4 such that

〈ξ, U(a,1)ξ〉 =

∫
R4

exp
(
i
∑
j

ajλj

)
〈ξ, E(dλ)ξ〉. (1.3)

• Readers which are unfamiliar with measure theory should think of 〈ξ, E(dλ)ξ〉 as
Eξ(λ) dλ with singular (i.e. �distributional�) density function Eξ(λ). The latter can
be written as Eξ(λ) = 〈ξ, E(λ)ξ〉 with a likewise singular map E from R4 into the
set of projection operators in H. Note, however, that this is a very handwaving point
of view. A mathematical rigorous interpretation requires measure theory.

• Finally we de�ne two regions σ1, σ2 to be spacelike separated if we can not reach σ1

from σ2 with a causal curve8 and vice versa. This is best described in a picture; cf.
Figure 3.

Figure 3: Two open regions σ1, σ2 ⊂ R4 are
called spacelike separated if they
are separated by the light cone so
there is no physically possible in-
formation exchange between them.
Formally this means that for any
x ∈ σ1, y ∈ σ2 we have η(x− y, x−
y) < 0.

De�nition 1.26. A 5-tuple (H, D,Φ,Ω, U) consisting of a hermitian quantum �eld
(H, D,Φ,Ω) and a strongly continuous representation of the Poincaré group U is called
Wightman quantum �eld if the following conditions are ful�lled.

(a) (Local commutativity or microscopic causality). If f and g in S (R4) have supports
which are spacelike separated, then [Φ(f),Φ(g)] = 0.

(b) (Special covariance). For each (a,Λ) ∈ P↑+ and all f ∈ S (R4) we have

Φ((a,Λ), f) = U(a,Λ)Φ(f)U(a,Λ)∗,

where ((a,Λ), f)(x) = f(Λ−1(x− a)).

(c) (Uniqueness and invariance of the vacuum). There exists a unique vector Ω ∈ H
such that for all a ∈ R4 we have

U(a,1)Ω = Ω.

8This means by travelling with at most the speed of light.
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(d) (Spectral condition). The support of the spectral measure E from Eq. (1.3) is
contained in the forward light cone V + = {v ∈ R4 |V0 > 0, η(v, v) > 0}.

Remark 1.27. The local commutativity condition mathematically expresses the quantum-
mechanical statement that measurements in spacelike separated regions should be jointly
measurable; cf. the discussion in Remark 1.23. Note that commutation in the given form
does not guarantee jointly measurability, but it is a necessary condition; cf. in this context
[RS80], Sec. VIII.5.

Remark 1.28 (Spectrum condition). The spectral condition means that the joint spec-
trum of Pj is contained in the forward light cone, so σ(P0) ⊂ R

+
0 and the energy is positive

for all inertial systems. This can be seen very easily and without advanced knowledge
if we assume that all the Pj have purely discrete spectrum. Note that this is not very
realistic from the physical point of view since the four momenta usually have continuous
spectrum and the three-momentum typically has no eigenvalues at all. It is, however,
a very simple case where measure theory is not required and therefore it can help to
understand the role of the spectral measure E and the spectrum condition.
Since the Pj are mutually commuting, there exists a complete orthonormal system

(φn)n∈N in H with Pjφn = λjnφn for j = 0, . . . , 3. De�ning λn = (λ0n, . . . , λ3n) we get

exp
(
i

3∑
j=0

ajPj

)
φn = exp(ia · λn)φn =⇒ exp

(
i

3∑
j=0

ajPj

)
=

∞∑
n=0

eia·λn |φn〉〈φn|.

where the sum is strongly convergent9. With this and (1.2), we see that the matrix
elements of the unitaries are given by

〈x, U(a,1)x〉 =
∞∑
n=0

eia·λn |〈x, φn〉|2.

Written as an integral, we get

〈x, U(a,1)x〉 =

∫
R4

eia·λ
∞∑
n=0

δ(λ− λn)|〈x, λn〉|2︸ ︷︷ ︸
Ex(λ)

dλ.

Another option is to use Eλ =
∑∞

n=0 δ(λ− λn)|φn〉〈φn| which yields

〈x, U(a,1)x〉 =

∫
R4

eia·λd〈x,Eλx〉.

This expression also makes sense in the non-discrete case. The support of the spectral

9This means that
∑∞
n=0 e

ia·λn |φn〉〈φn, ξ〉 converges for all ξ ∈ H

13
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measure E obviously is given by

σ(E) = {λn |n ∈ N} ⊂ R
4.

The spectral condition now demands

σ(E) ⊂ V+ = {v ∈ R4 | η(v, v) > 0, v0 > 0},

where V+ is the forward light cone. Now λn ∈ V+ by de�nition means λ0n > 0, which
implies positive energy.

Remark 1.29 (Interpretation). A Wightman quantum �eld describes a physical sys-
tem which transforms covariantly under Poincaré tranformations (i.e. change of inertial
systems). It combines the unitary representation U(a,Λ) of the Poincaré group, and all
objects and concepts derived from it, like the four-momentum operators Pj , j = 0, . . . , 3
(cf. Remark 1.25), with a Hermitian quantum �eld Φ(f). The Pj contain in particular
the dynamical description of the model. As observables they are not that important from
a practical point of view, since they are global, i.e. they measure the four-momentum of
the whole universe. The �eld operators Φ(f) on the other hand are of local nature, as
pointed out in Remark 1.23. Hence they are more realisitically linked to quantities which
actually can be measured in an experiment. A typical model involving quantum �elds
usually contains more than one �eld, describing di�erent physical quantities or observ-
ables. For example in addition to the �eld Φ describing �eld amplitudes we might want to
look at components of the energy momentum tensor, which are described by additional
�elds within the same model.
The previous remark might create the impression that the �elds are completely kine-

matical objects, while the dynamics is exclusively contained in the representation U(a,Λ).
This point of view, however, is wrong. Since a Wightman �eld is a spacetime �eld, it does
contain dynamical information. The axioms in De�nition 1.26, in particular the Poincaré
covariance and the invariance of the vacuum, link the �eld Φ and the representation
U(a,Λ) very closely together, in other words they are not independent, and the �elds
contain informations about the representation U(a,Λ).

Remark 1.30 (Wightman axioms). We haven't explicitly talked about the Wightman
axioms for a scalar �eld, because we have distributed them over De�nitions 1.21, 1.22
and 1.26. In Def. 1.21 and 1.22 we �nd (numerations taken from [RS75], Sec. IX.8):
Invariant domain for the �elds (Axiom 4), regularity of the �elds (Axiom 5) and the
cyclicity of the vaccuum (Axiom 8). In De�nition 1.26 we have the existence of the
representation U (�relativistic invariance of states�; Axiom 1), the spectral condition
(Axiom 2), the invariance of the vacuum (�existence and uniqueness of the vaccum�;
Axiom 3), the Poincaré invariance of the �elds (Axiom 6) and the local commutativity
(Axiom 7).
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1.3 Wightman Distributions

Consider a hermitian quantum �eld (H, D,Φ,Ω) and de�ne

W̃ (m) : S (Rn)× . . .×S (Rn)︸ ︷︷ ︸
m factors

→ C (f1, . . . , fm) 7−→ 〈Ω,Φ(f1) . . .Φ(fm)Ω〉

for any m ∈ N. By regularity of the �eld, W̃ (m) is separately continuous in all arguments
because

f1 7−→ 〈 Ω︸︷︷︸
∈D

,Φ(f1) . . .Φ(fm)Ω︸ ︷︷ ︸
∈D

〉

is continuous, the same is true for

f2 7−→ 〈Φ(f1)∗Ω︸ ︷︷ ︸
∈D

,Φ(f2) . . .Φ(fm)Ω︸ ︷︷ ︸
∈D

〉

and so forth. By the nuclear theorem (see Theorem 1.13), there exists a unique distribu-
tion W (m) ∈ S ′(Rn × . . .× Rn) = S ′(Rn·m) such that

W (m)(f1 ⊗ . . .⊗ fm) = W̃ (m)(f1, . . . , fm).

In particular, W̃ (m) is jointly continuous.

De�nition 1.31. The W (m), m ∈ N are called Wightman distributions of the quantum
�eld (H, D,Φ,Ω).

The tasks now are to reconstruct a quantum �eld from W (m) and to translate the
Wightman axioms into conditions on W (m). The solution to both tasks is known as the
Wightman reconstruction theorem

De�nition 1.32. A complex vector space A is called unital ∗-algebra if A is equipped
with a bilinear, associative product,

A×A 3 (A,B) 7−→ AB ∈ A

and an antilinear10 involution11 (∗-operation)

A 3 A 7−→ A∗ ∈ A

which satis�es (AB)∗ = B∗A∗ and there exists a unit 1 ∈ A with A1 = 1A = A for all
A ∈ A.

De�nition 1.33. A functional ω : A → C is called a state of A if

10This means (A+ λB)∗ = A∗ + λB∗.
11This means A∗∗ = A.
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(a) ω is linear and continuous.

(b) (Positivity). ω(A∗A) ≥ 0 for all A ∈ A.
(c) (Normalization). ω(1) = 1.

Lemma 1.34. A state ω of a *-algebra A has the following properties

(a) (Symmetry). ω(A∗B) = ω(B∗A).

(b) (Cauchy-Schwarz). |ω(A∗B)|2 ≤ ω(A∗A)ω(B∗B).

Proof idea. Look at ω((λA+B)∗(λA+B)) ≥ 0. Otherwise cf. [BR02] Lemma 2.3.10.

De�nition 1.35. A cyclic representation of a ∗-Algebra is a 4-tuple (H, D, π,Ω) con-
sisting of a Hilbert space H, a dense subspace D ⊂ H, a vector Ω ∈ D and a complex
linear map

π : A → L(D,D) ⊂ L(D,H),

such that the following holds for all A,B ∈ A.
(a) π(AB) = π(A)π(B).

(b) π(A∗) = π(A)∗|D.
(c) (Cyclicity). {π(A)Ω |A ∈ A} = D0 ⊂ D ⊂ H is dense.

Again, D0 is automatically an allowed domain and actually the smallest one.

Theorem 1.36 (Gelfand�Naimark�Segal (GNS)-representation). Let A be ∗-algebra and
ω : A → C be a state. Then there exists a cyclic representation (Hω, Dω, πω,Ωω), such
that

ω(A) = 〈Ωω, πω(A)Ωω〉 (1.4)

holds for all A ∈ A. If Dω = D0, this representation is unique up to unitary equivalence.

Proof. On A we de�ne

〈A,B〉 = ω(A∗B)

which is sesquilinear and positive semi-de�nite by Lemma 1.34, but ω(A∗A) = 0 may
happen for A 6= 0. Therefore we de�ne

I ω = {A ∈ A |ω(A∗A) = 0}.

We want to show that I ω is a left ideal in A. First, I ω is linear for the following reason.

(a) For A ∈ I ω, λ ∈ C now

ω((λA)∗(λA)) = |λ|2ω(A∗A)

implies λA ∈ I ω.

16
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(b) For A,B ∈ I ω we have

ω((A+B)∗(A+B)) = ω(A∗A)
=0

+ ω(B∗B)
=0

+ 2 Reω(A∗B) = 0.

It is easy to see that 2 Reω(A∗B) vanishes by Cauchy-Schwarz.

Now A ∈ I ω implies |〈A,B〉|2 ≤ ω(A∗A)ω(B∗B) so 〈A,B〉 = 0 for all B ∈ A and thus

I ω = 〈A ∈ A |ω(AB) = 0 ∀B∈A}.

Finally, I ω is a left ideal because

ω((BA)∗C) = ω(A∗(B∗C)) = 0 =⇒ BA ∈ I ω

for any A ∈ I ω, B,C ∈ A. Now we de�ne Dω = A\I ω and a scalar product 〈[A], [B]〉 =
〈A,B〉 which is well-de�ned as can be veri�ed readily. Our Hilbert space H then is given
by the completion of Dω, which by construction is dense in H. For A,B ∈ A, I ∈ I ω

we have

A(B + I) = AB + AI︸︷︷︸
∈I ω

=⇒ A(B + I) ∈ [AB].

Thus we can de�ne πω by

πω(A)[B] = [AB],

as well as Ωω = [1]. Then πω(A)Ω = [A] and {πω(A)Ω |A ∈ A} = Dω ⊂ H is dense.
Finally, we have to check (1.4).

〈Ωω, πω(A),Ωω〉 = 〈[π], πω(A)[π]〉 = 〈[π], [Aπ]〉 = 〈[1], [A]〉 = ω(1A) = ω(A)

Now for the uniqueness. Let (H̃, D̃, π̃, Ω̃) be another cyclic representation which satis�es
(1.4) with D̃ = D̃0 = {π̃(A)Ω̃ |A ∈ A}. De�ne

U : Dω → D̃ Uπω(A)Ωω = π̃(A)Ω̃

After showing that U is well-de�ned and unitary, one extends it to H and sees that
UDω = D̃ and Uπω(A)U∗ = π̃(A).

Proposition 1.37. Consider �nite direct sums

A = C⊕S (Rn)⊕S (Rn × Rn)⊕ . . .

with seminorms ‖f‖(m)
αβ = ‖fm‖αβ, where

f = f1 ⊕ . . .⊕ fm ⊕ . . .⊕ fn

17
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and fn ∈ S (Rn·m), and consider the product

fg = [f (0) ⊕ f1 ⊕ . . .⊕ fn]⊗ [g(0) ⊕ . . .⊕ g(k)]

= f (0) ⊗ g(0) ⊕ (f (0) ⊗ g(1) + f1 ⊗ g(0))⊕ (f (0) ⊗ g(2) + f1 ⊗ g(1) + f2 ⊗ g(0))⊕ . . . ,

as well as the ∗-operation

(f∗)(m)(x1, . . . , xm) = fm(xm, . . . , x1).

Then A is locally convex space and ∗-algebra. Further, the operations are continuous so
A is a topological ∗-algebra with unit 1 = 1⊕ 0⊕ 0⊕ . . .⊕ 0.

De�nition 1.38. The A just de�ned is called Borchers-Uhlmann-algebra (BU-Algebra).

The following proposition is a straightforward consequence of the de�nitions.

Proposition 1.39. Let (H, D,Φ,Ω) be a hermitian quantum �eld with Wightman dis-
tributions W (m). The functional

ω(f (0) ⊕ f1 ⊕ . . .⊕ fm) =
m∑
α=0

W (α)f (α) (1.5)

is a state of the BU-Algebra.

Proposition 1.40. Let (H, D,Φ,Ω) be a hermitian quantum �eld. There is a unique
cyclic representation (H, D, π,Ω) such that

π(f1 ⊗ . . .⊗ fm) = Φ(f1) . . .Φ(fm).

Further, π is the GNS representation of ω from (1.5).

Proof idea. First, we de�ne A0 ⊂ A generated by tensor products f1 ⊗ . . . ⊗ fm which
again is a ∗-algebra. The representation π is the GNS representation of ω restricted to
A0 by the de�nition of the Wightman distributions. Consider the GNS representation
(Hω, Dω, πω,Ωω) of A with respect to the state ω. If we restrict πω to A0 we get a new
representation π̃. We show that Ωω is cyclic for π̃ by using the following facts:

(a) The span of tensor products f1⊗ . . .⊗ fm is dense in S (Rn× . . .×Rn) by the N
representation theorem; cf. [RS80] Theorem V.13. Hence A0 is dense in A.

(b) The representation is continuous in the sense that

S (Rn × . . .× Rn) 3 f 7−→ 〈ξ, πω(f)ψ〉

is in S ′(Rn·m) (by the nuclear theorem) for all ξ, ψ ∈ Dω.

Assume that Ωω is not cyclic for π̃. Then there is a 0 6= ξ ∈ Hω such that 〈π̃(f)Ωω, ξ〉 = 0
for all f ∈ A0. But since πω is the GNS representation of A with respect to ω, the vector
Ωω is cyclic for πω, i.e. there is a f ∈ A such that 〈πω(f)Ωω, ξ〉 6= 0. By the denseness
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of A0 in A there is a sequence of fk ∈ A0 k ∈ N converging to f ∈ A. Hence by the
continuity just stated we get

lim
k→0
〈π̃(fk)Ωω, ξ〉 = lim

k→0
〈πω(fk)Ωω, ξ〉 = 〈πω(f)Ωω, ξ〉

in contradiction to 〈π̃(fk)Ωω, ξ〉 = 0 and 〈πω(f)Ωω, ξ〉 6= 0. Hence Ωω is a cyclic vector
for π̃ and the latter is therefore unitarily equivalent to the GNS representation of A0

with respect to ω. Hence there exists a unitary U : Hω → H such that

Uπω(f1) . . . πω(fm)U∗ = Φ(f1) . . .Φ(fm).

For arbitrary f ∈ S (Rn·m) we de�ne Φ(f) := Uπω(f)U∗, which is the extension we are
looking for. The uniqueness follows from the fact that the matrix elements 〈ξ,Φ(f)ψ〉 for
ξ, ψ ∈ D0 are uniquely determined by ω.

Remark 1.41 (Fields and representations). The previous results show that a quan-
tum �eld (H,D0,Φ,Ω) can be recovered (up to unitary equivalence) from its Wightman
distributions W (m). The W (m) de�ne a state ω on the BU-algebra A, this state has a
GNS representation (Hω, Dω, πω,Ωω) which by Proposition 1.39 is unitarily equivalent
to the representation de�ned by Φ, i.e. there is a unitary U with UΦ(f1) · · ·Φ(fm)U∗ =
πω(f1⊗· · ·⊗fm) for all f1, . . . , fm ∈ S (Rn) and all m ∈ N. Hence we recover a unitarily
equivalent copy of Φ by

S (Rn) 3 f 7→ Φω(f) = πω(f) ∈ L(Dω, Dω). (1.6)

The last equation shows that we even have a little bit more. If ω is any continuous state
of A, it de�nes its GNS representation (Hω, Dω, πω,Ωω) and via Eq. (1.6) a map Φω from
S (Rn) to L(Dω, Dω). Hence the 4-tuple (Hω, Dω,Φω,Ωω) is a quantum �eld, and would
be a hermitian quantum �eld if the Φω(f) would be essentially self-adjoint for real-valued
f . This is unfortunately something we can not get for free. Hence it is � at least in the
present context � advantageous to drop the self-adjointness condition from Def. 1.22. In
that case we get two one-to-one correspondences:

Hermitian quantum �eld ←→ Representations of A

and

Sequences of Wightman distributions ←→ States of A.

Let us come back to Wightman �elds. The next proposition tells us how the additional
properties translate into properties of the Wightman distributions.

Proposition 1.42 ([SW64], Chapter 3.3). Let (H, D,Φ,Ω, U) a Wightman quantum
�eld. Then the following statements hold.

(a) All the W (m) are Poincaré-invariant, so

W (m)((a,Λ)f) = W (m)(f)
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where ((a,Λ)f) = f(Λ−1(x1 − a), . . .).

(b) (Spectrum condition). The Fourier transform Ŵ (m) of W (m) has support in the
set of p = (p1, . . . , pm) ∈ Rn·m with

∑m
j=1 pj = 0 and

∑m
j=k pj ∈ V + for any

k = 2, . . . ,m.

(c) (Locality). Whenever xk and xk+1 are spacelike separated, we have

W (m)(x1, . . . , xk, xk+1, . . . , xm) = W (m)(x1, . . . , xk+1, xk, . . . , xm).

(d) (Cluster property).

lim
‖a‖→∞

W (m)(x1, . . . , xk,xk+1 + a, . . . , xm + a)

= W (k)(x1, . . . , xk)W
(m−k)(xk+1, . . . , xm)

Remark 1.43 (Interpretation). TheW (m) can be regarded as correlation functions. E.g.
W (2) � which is often called the 3-point function � describes the correlations between
two �eld operators Φ(f), Φ(g) in the vacuum. If W (2)(f ⊗ g) factorizes, measurements
of Φ(f) and Φ(g) in the vaccuum are uncorrelated. By the cluster property this happens
if the supports of f and g are very far apart. Spacial separation is, on the other hand,
not su�cient. We only get invariance under permutations of f and g. A closer analysis
shows that the correlations of the �elds between spacelike separated events in the vaccum
representation can be arbitrarily high, if the distance between the events is small enough.
Poincaré invariance shows that these correlations look always the same in all inertial
frames. In particular translations are interesting since it allows us to rewrite W (2) in
terms of a distribution W2 ∈ S (R4) such that we formally get

W (2)(f ⊗ g) =

∫
R4

∫
R4

W (2)(x, y)f(x)g(y) dx dy =

∫
R4

∫
R4

W2(x− y)f(x)g(y) dx dy.

Similarly we can rewrite W (m) in terms of a distribution Wm in S (R(m−1)·4). The Wm

have interesting analyticity properties which can be used to prove structural results like
the PCT theorem The spectrum condition translates to support properties in momentum
space.

The last result in this chapter combines the construction of a quantum �eld from
a sequence of Wightman distributions discussed above with discussion from the last
proposition. In a nutshell it says that if theW (m) have all the properties from Proposition
1.42, the reconstructed �eld is a Wightman QF.

Theorem 1.44 ([SW64], Theorem 3.7). Consider Rn = R4. Let a state ω : A →
C of the BU-Algebra A be given and consider the corresponding GNS representation
(Hω, Dω, πω,Ωω). Further let ω(f) =

∑m
α=0W

(α)(f (α)) for W (α) ∈ S ′(R4α) and let
W (m) satisfy the four conditions from Proposition 1.42. Then there exists a strongly con-
tinuous unitary representation Uω : P↑+ → U(Hω) such that (Hω, Dω, πω,Ωω, Uω) is a
Wightman quantum �eld, although without the self-adjointness of the �eld operators.
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2 The Free Scalar Field

2 The Free Scalar Field

2.1 Representation of the Poincaré Group

De�nition 2.1. Let a group G, a C-vector space V and ξ : G×G→ R be given. A map
U : G→ GL(V ) is called projective representation of G if

U(f)U(g) = eiξ(f,g)U(fg).

The exponents ξ can not be chosen freely, but have to satisfy some contraints, which
can be easily deduced (e.g. look at U(f)U(g)U(h)). If all of them are satis�ed, ξ is called
a cocycle.
By Wigner, a free, relativistic elementary particle is described by a projective uni-

tary representation of P↑+ which actually has to be irreducible emphasizing on the term

elementary. So Wigners goal was to classify all the projective representations of P↑+.
For more on this topic, we refer to [Bog+90, Chapter 7.2] and [RS75, Chapter IX.8].

The representations of P↑+ can be divided into classes via the mass, given by m2 ∈ R.
Here the physical case obviously is m2 ≥ 0. All representations with m2 > 0 are fur-
ther characterized, up to unitary equivalence, by the spin s ∈ 1

2N0 = {0, 1
2 , 1,

3
2 , . . .} of

the representation. There exists a unique unitary projective representation of P↑+ with
m2 > 0, s ∈ 1

2N0.
We will proceed with the easiest case m2 > 0, s = 0. The �rst step is to de�ne the

�mass shell�

Hm = {p ∈ R4 | η(p, p) = m2, p0 > 0}. (2.1)

Note, that Hm is an orbit of SO↑(1, 3) since for Λ ∈ SO↑(1, 3), p ∈ Hm we have Λp ∈ Hm.

Figure 4: The mass shell
from Eq. (2.1) as
part of the for-
ward light cone.

We parametrize Hm by

R
3 3 p 7−→ j(p) = (ω(p), p) ∈ Hm (2.2)

with ω(p) =
√
‖p‖2 +m2. This j can be regarded as a coordinate system such that

Hm becomes a smooth manifold. An only slightly more detailed analysis shows that it
actually is a smooth submanifold of R4. This shows in paticular that Hm is a locally
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2 The Free Scalar Field

compact topological sapce which is homeomorphic to R3. Hence we can consider Borel
subsets of Hm and de�ne the following Lorentz invariant measure.

Proposition 2.2 ([RS75], Thm IX.37). For all Borel subsets Ω ⊂ Hm we write

Ωm(Ω) =

∫
j−1(Ω)

dp

ω(p)
.

This de�nes a Borel measure on Hm which is Lorentz invariant: Ωm(ΛΩ) = Ωm(Ω) for
all Λ ∈ SO↑(1, 3) and all Borel sets Ω ⊂ Hm.

With Ωm we can de�ne the Hilbert space L2(Hm,Ωm) of square-integrable functions
on Hm. Since Ωm is Lorentz invariant, a transformation f( · ) 7→ f(Λ−1 · ) with a Lorenz
transformation Λ leads to a unitary operator U(Λ) on L2(Hm,Ωm), and therefore to a
unitary representation of SO↑(1, 3) which is easily shown to be strongly continuous, i.e.
the map

SO↑(1, 3) 3 Λ 7→ U(Λ)ψ ∈ L2(Hm,Ωm) (2.3)

is continuous for all ψ ∈ L2(Hm,Ωm). Combining this with a representation of the trans-

lation group leads to a representation of P↑+.

Proposition 2.3. The map P↑+ 3 (b,Λ) 7→ U(b,Λ) ∈ U
(
L2(Hm,Ωm)

)
with

(U(b,Λ)ψ)(p) = eiη(b,p)φ(Λ−1p).

is a strongly continuous, irreducible, unitary representation of the restricted Poincaré
group.

Proof. The proof is easy and therefore left as an exercise. Note that strong coninuity can
be de�ned as in Eq. (2.3).

Remark 2.4 (Interpretation). The representation just constructed contains (almost)
everything we need for the quantum mechanics of one relativistic particle of mass m
and spin 0. Due to strong continuity we can de�ne the generators of the translations as
self-adjoint operators Pj , j = 0, . . . , 3

Pjψ = −i d

dλ
eiη(λej ,p)ψ(p)

∣∣∣∣
λ=0

where the domains D(Pj) are consisting of exactly those ψ for which the given limit
exists; cf. Remark 1.25. Explicitly we get

(P0ψ)(ω(k), k) = ω(k)ψ(ω(k), k), (Pjψ)(ω(k), k) = −kjψ(ω(k), k) j = 1, 2, 3.

The Pj for j = 1, 2, 3 describe the three-momentum of the particle, P0 is its Hamiltonian.
With the reasoning already pointed out in Remark 1.25 the operator Pb =

∑
j bjPj

describes the Hamiltoian in the inertial frame moving with four-velocity b ∈ H1. Hence,
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2 The Free Scalar Field

we have almost everything we need for a quantum mechanical description. The only
missing component are the position operators. They do not come out of the representation
U directly, but they have to satis�y a number of conditions. The corresponding analysis
was carried out by Newton and Wigner in 1949. The resulting theory has serious locality
problems as already mentioned in the introduction. We omit the discussion at that point,
but refer the reader to original work.

We can use the parametrization map j to pull everything back to the Hilbert space
L2(R3). This is sometimes useful � in particular if we want to compare results with
expressions known from the physics literature.

Proposition 2.5. The map J : L2(Hm,Ωm)→ L2(R3) given by

(Jψ)(k) =
(ψ ◦ j)(k)√

ω(k)
=
ψ(ω(k), k)√

ω(k)

is a unitary operator.

Proof. This is easily checked and therefore left as an exercise.

2.2 The Klein-Gordon Equation

Our goal is to quantize the Klein-Gordon equation. Therefore, we have to have a closer
look on the classical solutions and their relations to the discussion of the previous section.
Hence, let us start with

(�+m2)Ψ :=
∂2Ψ

∂t2
−∆Ψ +m2Ψ = 0 (2.4)

and
Ψ ∈ KC := {Ψ ∈ C2(R4,C) |Ψt( · ) := Ψ(t, · ) ∈ S (R3)}. (2.5)

This somewhat strange function space arises from the desire to use the Fourier transform
with respect to the position variable x ∈ R3. We are interested in solutions of the Cauchy
problem with initial data in S (R3):

Ψ(0, x) = f(x) and ∂tΨ(0, x) = p(x) with f, p ∈ S (R3).

Using the shortcut notation Ψt(x) := Ψ(t, x) as in Eq. (2.5), now Ψ̂t is the Fourier
transform with respect to x ∈ R3. Fourier transforming all of (2.4) (in R3) gives

∂2Ψ̂t(k)

∂t2
+ ‖k‖2Ψ̂t(k) +m2Ψ̂t(k) = 0.

So for any k, we get an ordinary di�erential equation of second order in t which yields
the solution

Ψ̂t(k) = b(k)eiω(k)t + c(k)e−iω(k)t
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2 The Free Scalar Field

with ω(k) =
√
‖k‖2 +m2 > 0 for all k since m > 0. Using the initial conditions, we

easily get

f̂(k) = b(k) + c(k) p̂(k) = iω(k)(b(k)− c(k))

and thus

b(k) =
1

2

(
f̂(k)− i

ω(k)
p̂(k)

)
c(k) =

1

2

(
f̂(k) +

i

ω(k)
p̂(k)

)
. (2.6)

Proposition 2.6. For all initial data f, p ∈ S (R3) there exists a unique solution Ψ ∈ KC
to the Klein-Gordon equation which is given by

Ψ(t, x) =
1

(2π)3/2

∫
R3

(
b(k)ei(k·x+ω(k)t) + c(k)ei(k·x−ω(k)t)

)
d3k (2.7)

for all t ∈ R. The functions b(k), c(k) are derived from f, p as in (2.6) and ω(k) =√
‖k‖2 +m2.

Proof. We haven't shown yet that the presented solution really is in the set KC. To this
end �rst note that ω and 1/ω are smooth functions. Furthermore they are polynomially
bounded, and the same is true for all its powers. Hence, for all f ∈ S (R3) the products
ωnf and ω−nf are Schwartz functions again. The same is true if we multiply for �xed
t ∈ R with a phase factor e±itω(k). With this knowledge we conclude from Eq. (2.6) that
b and c are in S (R3). Hence the expression in Eq. (2.7) is for �xed t the sum of the
inverse Fourier transform of two Schwartz functions, which is again a Schwartz function
in variable x for �xed t.

Remark 2.7. For later use let us recall that we can multiply and divide Schwartz
functions by ω and still get Schwartz functions. This follows since ω(k) is bounded from
below by m > 0 (hence we avoid the singularities at zero) and polynomially bounded
from above (the same is obviously true for all powers of ω). We have already used such
an argument in Example 1.8 to de�ne the product of a distribution and a polynomially
bounded function.

Now we want to look for a real-valued solution Ψ, f ∈ S (R3,R). For the Fourier
transform this means

f̂(k) =
1

(2π)3/2

∫
R3

f(x)eik·x dx,

so f̂(k) = f̂(−k) which implies b(−k) = c(k). Putting this into the solution we have by
Proposition 2.6 gives us

Ψ(t, x) =
1

(2π)3/2

∫
R3

c(−k)ei(k·x+ω(k)t) dk +
1

(2π)3/2

∫
R3

c(k)ei(k·x−ω(k)t) dk.
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2 The Free Scalar Field

In the �rst integral, we substitute k → −k, which produces no sign, so putting in a(k) =√
2ω(k)c(k) gives the real-valued solution

Ψ(t, x) =
1

(2π)3/2

∫
R3

(
a(k)e−i(k·x−ω(k)t) + a(k)ei(k·x−ω(k)t)

) dk√
2ω(k)

. (2.8)

Obviously the argument of the integral is real as sum of something and its complex
conjugate. Now let us introduce A ∈ L2(Hm,Ωm) by A = J−1a, where J is unitary from
Proposition 2.5. We can express a in terms of A by

a(k) = (JA)(k) =
A(ω(k), k)√

ω(k)
.

Inserting this into Eq. (2.8) and using the abbreviation ξ = (t, x), we get an integral over
the mass shell.

Ψ(ξ) =
1

(2π)3/2

∫
Hm

(
A(λ)eiη(ξ,λ) +A(λ)e−iη(ξ,λ)

) dΩ(λ)√
2
.

We summarize this discussion in the following two propositions.

Proposition 2.8. Consider the setsM = S (R3)×S (R3) and S (Hm) = J−1
(
S (R3)

)
⊂

L2(Hm,Ωm). For each (f, p) ∈M the function Af,p : Hm → C with

Af,p(ω(k), k) =
1√
2

(
ω(k)f̂(k) + ip̂(k)

)
is in S (Hm). The corresponding map M 3 (f, p) 7→ Af,p ∈ S (Hm) is real linear and
invertible. The inverse is given by S (Hm) 3 A 7→ (fA, pA) ∈M with

fA(x) =
1

(2π)3/2

∫
R3

(
a(k)eik·x + a(k)e−ik·x

) dk√
2ω(k)

(2.9)

pA(x) =
i

(2π)3/2

∫
R3

(
a(k)eik·x − a(k)e−ik·x

) √ω(k)√
2

dk

with a = JA and the unitary J from Proposition 2.5.

Proof. We have to show that JAf,p with (f, p) ∈M and

JAf,p(k) =
1√
2

(√
ω(k)f̂(k) +

i√
ω(k)

p̂(k)

)

is in S (R3) . But this follows from the fact that f, p are Schwartz functions and Remark
2.7 above. Linearity of the map is obvious, and invertibility follows from the existence of
an inverse. That the given map is really the inverse is left as an exercise to the reader
(this can be easily done with slight modi�cations of the calculations above).
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2 The Free Scalar Field

Proposition 2.9. For each A ∈ S (Hm) = J−1
(
S (R3)

)
⊂ L2(Hm,Ωm) the expresssion

Ψ =
√

2 ReFA with (FA)(ξ) =
1

(2π)3/2

∫
Hm

eiη(ξ,λ)A(λ)dΩ(λ)

hence

Ψ(ξ) =
1

(2π)3/2

∫
Hm

(
A(λ)eiη(ξ,λ) +A(λ)e−iη(ξ,λ)

) dΩ(λ)√
2
. (2.10)

is a solution of the Klein-Gordon equation (2.4), and an element of the space K = {f ∈
Kc | f = f} with KC from Eq. (2.5). The corresponding initial data are given as (f, p) =
(fA, pA) with the expressions from Proposition 2.8. Similarly, we get the solution with
initial data (f, p) ∈M if A = Af,p holds.

Proof. That FA is a solution follows easily from

∂2

∂t2
FA(t, x) = − 1

(2π)3/2

∫
R3

ei(ω(k)t−k·x)ω(k)2a(k)
dk√
ω(k)

(∆FA)(t, x) =
1

(2π)3/2

∫
R3

ei(ω(k)t−k·x)‖k‖2a(k)
dk√
ω(k)

.

With a = JA and the unitary J from Proposition 2.5. Hence ReFA is a real-valued
solution. The initial data for the solution FA are easily calculated as

(FA)(0, x) =
1

(2π)3/2

∫
R3

e−ix·k
a(k)√
ω(k)

dk, (2.11)( ∂
∂t
FA
)

(0, x) =
i

(2π)3/2

∫
R3

e−ix·ka(k)
√
ω(k) dk (2.12)

and are obviously Schwartz functions (cf. Remark 2.7). Hence by Proposition 2.6 the
solution FA is in KC, its real part, obviously, is in K. The remaining statements follow
immediately from Eqs. (2.11), (2.12) and Proposition 2.8.

Remark 2.10 (Fourier transform). In the last proposition we have implicitly introduced
the map

F : S (Hm)→ C∞(R4), A 7→ FA with FA(ξ) =

∫
Hm

eiη(ξ,λ)g(λ) dΩ(λ)

and the domain
S (Hm) = J−1

(
S (R3)

)
⊂ L2(Hm,Ωm).

Since J is unitary, S is an isomorphic copy of S (R3). Hence we can equip it with the
same topology such that it becomes a Fréchet space. This implies in particular that we
can de�ne the topological dual S ′(Hm) and embed S (Hm) into S ′(Hm) via a map
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2 The Free Scalar Field

S (Hm) 3 A 7→ φA ∈ S ′(Hm) with

φA(f) =

∫
Hm

A(λ)f(λ) dΩm(λ).

All our knowledge about tempered distributions can be translated to the �mass shell
supported� versions in S (Hm) via the map J .
The map F can be regarded as some form of Fourier transform and as such it can be

extended to the distribution space S ′(Hm). This can be done in terms of

E : S (R4) 3 f 7→
√

2πf̃
∣∣
Hm

with f̃(λ) =
1

2π

∫
R4

eiη(ξ,λ)f(ξ) dξ. (2.13)

Note that we have de�ned the Fourier transform f̃ for this particular purpose with the
Minkowski metric η rather than the usual scalar product. With the map E we write

φA(Ef) =
√

2π

∫
Hm

1

(2π)2

∫
R4

eiη(ξ,λ)f(ξ) dξ A(λ) dΩ(λ)

=

∫
R4

[
1

(2π)3/2

∫
Hm

eiη(ξ,λ)A(λ) dΩm(λ)

]
f(ξ) dξ

=

∫
R4

FA(ξ)f(ξ) dξ = φFA(f)

with φFA ∈ S ′(R4) the regular distribution belonging to FA ∈ C∞(R4) � please check
that this is well-de�ned although FA is not in Lp, cf. Example 1.6. Summarizing this
calculation we can conclude that S ′(Hm) 3 φ 7→ φ ◦E ∈ S ′(R4) is the (unique) weakly
contiunous extension of F to S ′(Hm); cf. the discussion in Remark 1.7. The following
proposition shows how to recreate the real solution ReF in terms of the map E.

Proposition 2.11. For each A ∈ S (Hm) the complex linear extension of the map

S (R4,R) 3 f 7→
√

2 ReφA(Ef) =
√

2 Re

∫
Hm

Ef(λ)A(λ)dΩ(λ)

coincides with the regular distribution φ√2 ReFA

φ√2 ReFA(f) =

∫
R4

√
2 ReFA(ξ)f(ξ)dξ

associated to the solution
√

2 ReFA of the Klein-Gordon equation.
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Proof. We calculate φA(Ef) with real-valued test function f :

√
2 ReφA(Ef) =

1√
2

(
φA(Ef) + φA(Ef)

)
=

∫
Hm

A(λ)
1

(2π)3/2

∫
R4

eiη(λ,ξ)f(ξ) dξ dΩ(λ)+∫
Hm

A(λ)
1

(2π)3/2

∫
R4

e−iη(λ,ξ)f(ξ) dξ dΩ(λ)

Hence √
2 ReφA(Ef) =

∫
R4

f(ξ)
√

2 Re(FA)(ξ) dξ,

as claimed.

It is left as an Exercise to the reader that we can use this strategy to generate weak
(i.e. distributional) solutions of the Klein-Gordon equation. For us it is important to
remember this proposition when we introduce the free quantum �eld in the next section.

Proposition 2.12. Consider (b,Λ) ∈ P↑+ and the action of P↑+ on functions f : R4 → C

given by f 7→ (b,Λ)f with [(b,Λ)f ](ξ) = f
(
Λ−1(ξ− b)

)
. The map S (Hm) 3 A 7→ ReFA

intertwines this action with the representation U(b,Λ) introduced in Proposition 2.3. In
other words

(b,Λ) ReFA = ReFU(b,Λ)A

holds for all (b,Λ) ∈ P↑+ and all A ∈ S (Hm).

Proof. We write Ψ(ξ) = Re(FA)(ξ) and calculate

Ψ(Λ−1(ξ − b)) =
1

(2π)3/2

∫
Hm

(
A(λ)eiη(Λ−1(ξ−b),λ) +A(λ)e−iη(Λ−1(ξ−b),λ)

)
dΩm(λ)

=
1

(2π)3/2

∫
Hm

(
A(λ)eiη(ξ−b,Λλ) +A(λ)e−iη(ξ−b,Λλ)

)
dΩm(λ).

By substituting Λλ→ λ̃, due to Lorentz invariance of the measure Ωm we get

Ψ(Λ−1(ξ − b)) =
1

(2π)3/2

∫
Hm

(
A(Λ−1λ̃)eiη(ξ−b,λ̃) +A(Λ−1λ̃)e−iη(ξ−b,λ̃)

)
dΩm(λ̃)

=
1

(2π)3/2

∫
Hm

(
eiη(x,λ̃) eiη(b,λ̃)A(Λ−1λ̃)︸ ︷︷ ︸

=(U(b,Λ)A)(λ̃)

+ . . .
)
dΩm(λ̃)

= Re
(
FU(b,Λ)A

)
(ξ)

which concludes the proof.

Remark 2.13 (Canonical formalism). We can regard the spaceM = S (R,R)×S (R,R)
of initial data as the classical phase space of the system. The classical Hamilton function
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is given by

M3 (f, p) 7→ h(f, p) =
1

2
〈p, p〉+

1

2
〈(m2 −∆)f, f〉 ∈ R

where 〈·, ·〉 denotes the real standard scalar product on S (R3,R), i.e. 〈f, g〉 =
∫
R3 f(x)g(x)dx.

Using Gâteaux di�erentials we can easily de�ne partial derivatives of h as

∂

∂f
h(f, p) ∈ S (R3) with

〈 ∂

∂f
h(f, p), v

〉
=

d

dλ
h(f + λv, p)

∣∣
λ=0

∂

∂p
h(f, p) ∈ S (R3) with

〈 ∂
∂p

h(f, p), w
〉

=
d

dλ
h(f, p+ λw)

∣∣
λ=0

with v, w ∈ S (R3). It is easy to see that these partial di�erentials exist in the given sense
and have the values

∂

∂f
h(f, p) = (∆2 −m2)f with

∂

∂p
h(f, p) = p.

Now consider a curve R 3 t 7→ (ft, pt) ∈ M which is di�erentiable in the sense that
(t, x) 7→ ft(x) and (t, x) 7→ pt(x) are C1-functions on R4. Then we can de�ne the time
derivative (ḟt, ṗt) ∈M in terms of partial derivatives

ḟt(x) =
∂

∂t
ft(x), ṗt(x) =

∂

∂t
pt(x),

such that the Hamilton equations become

ḟt =
∂

∂p
h(ft, pt) = pt ṗt = − ∂

∂f
h(ft, pt) = (m2 −∆2)ft. (2.14)

Di�erentiating a second time and inserting the second equation into the �rst shows that
(t, x) 7→ f(t, x) has to satisfy the Klein-Gordon equation. Thus by Proposition 2.9 we
can conclude that the system of equations (2.14) has a unique solution for all initial
data f0 = f , p0 = p. We just take the unique solution ψ ∈ K of the Klein-Gordon
equation with initial data f, p and de�ne ft(x) = ψ(t, x) and pt(x) = ∂tψ(t, x). Hence
Hamiltons equation with the Hamilton function h represents a reinterpretation of the
Cauchy problem for the Klein-Gordon equation as an in�nite-dimensional Hamiltonian
system, i.e. something like in�nite-dimensional classical mechanics.
We are discussing this topic since we want to justify the interpretation of M as the

classical phase space of our system, and f, p as the canonical variables. With substantially
more e�ort we could also (in a mathematically rigorous way) introduce Poisson brackets
and see that f, p satisfy some kind of �canonical� Poisson relations (maybe I will add this
in a future version of these notes). This reinterpretation in a �canonical� (i.e. Hamiltonian)
way is useful in the context of quantization. A possible strategy to quantize the �eld
system we replace the classical �elds f(x) and p(x) by operator-valued �elds ϕ(x), π(x)
satisfying a version of �canonical commutation relations�, and generate the Hamiltonian
H of the quantum theory from h by replacing f and p with ϕ and π. The spacetime �eld
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Φ(t, x) then is generated by evolving ϕ(x) with time evolution exp(itH).
While this procedure basically works (although with a substantial reinterpretation,

which is nesscessary in order to make the math work rigorously) this is not the most
adequate way to proceed. At that point the mass shell function Af,p ∈ S (Hm) ⊂
L2(Hm,Ωm) comes into play. Since the map (f, p) 7→ Af,p is invertible, we can regard
the space S (Hm) as an alternative version of the phase space, which is parametrized in
terms of complex variables A,A rather then f, p. Everything we have expressed in terms
of f, p can be reexpressed with A,A. E.g. the Hamilton function h can be written as a
function of a = JA and a as follows.

h(a, a) =
1

2

∫
R3

ω(k)
(
a(k)a(k) + a(k)a(k)

)
dk (2.15)

It is left as an exercise to the reader to check this equation and to translate it into an
integral over Hm involving A,A rather than a, a.
The advantage of the variables A,A over f, p is the Poincaré covariance. The de�nition

of the initial data f, p requires a split of spacetime into space and time, and this �xes an
inertial frame up to spatial rotations and translations. Hence, there is not one canonical
formalism, but there is (roughly speaking) a di�erent one for each inertial frame. To
understand why this is di�erent for the mass shell functions A,A, consider two inertial
frames Σ1, Σ2 and a Poincaré transformation (b,Λ) transforming from Σ1 into Σ2. If a
�eld is described in Σ1 by a spacetime function ψ it is described in Σ2 by (b,Λ)ψ. Hence
if ψ is given by A ∈ S via ψ =

√
2 ReFA the transformed �eld is given by U(b,Λ)A; cf.

Proposition 2.12. Therefore the space S (Hm) does not only contain one but all canonical
descriptions for all inertial frames and the unitaries U(b,Λ) represent the transformation
from ψ to (b,Λ)ψ. This intrinsic covariance is a great advantage if we are aiming at a
quantum theory which has a similar covariance � like a Wightman quantum �eld theory.
Our strategy to quantize the Klein-Gordon equation is therefore to replace the func-

tions A,A in all expressions developed so far by appropriately chosen operator-valued
�elds (satisfying some commutation relations which are motivated by the Poisson rela-
tions I have skipped). Applying this strategy in particular to the expression in (2.10)
leads to an operator-valued spacetime �eld which (with an appropriate mathematical
reinterpretation of the steps just outlined) will become our Wightman �eld.

2.3 The Free Quantum Field

First we need to make some general remarks on Fock spaces12. Let H be a separable
Hilbert space. The belonging Fock space then is given by

F(H) = C⊕
( ∞⊕
n=1

H⊗n
)
.

12For more on the topic of Fock spaces of relativistic particles, we refer to [Bog+90, Chapter 7.3]
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Now for σ ∈ Sn, where Sn is the permutation group on n, we de�ne

Vσ : H⊗n → H⊗n σ(Ψ1 ⊗ . . .⊗Ψn) = Ψσ−1(1) ⊗ . . .⊗Ψσ−1(n)

and based on this, the symmetrization operator

Sn : H⊗n → H⊗n+ ⊂ H⊗n Sn =
1

n!

∑
σ∈Sn

Vσ.

Note, that Sn is a projection. Now the range H⊗n+ of Sn is called symmetric or Bose
subspace. With this, we further de�ne the symmetric Fock space as follows.

F+(H) = C⊕
( ∞⊕
n=1

H⊗n+

)
With this reminder, we can return to the free quantum �eld. We orient ourselves

towards [RS75, Chapter X.7]. For some f ∈ H we de�ne

b−(f) : H⊗n → H⊗(n−1) Ψ1 ⊗ . . .⊗Ψn 7−→ 〈f,Ψ1〉Ψ2 ⊗ . . .⊗Ψn

A short calculation shows ‖b−(f)‖ = ‖f‖ so b− is bounded and it can be linearly extended
to all of H⊗n for all n > 0. For n = 0 we de�ne b−(f) = 0. It is easy to check that
b+(f) = (b−(f))∗ on product vectors acts like

b+(f) = (Ψ1 ⊗ . . .⊗Ψn) = f ⊗Ψ1 ⊗ . . .⊗Ψn.

With this, we want to de�ne creation and annihilation operators as already known from
the quantum harmonic oscillator.
For a densely de�ned self-adjoint operator H : D(H)→ H on H we explain

F0 = {Ψ ∈ F+(H) | ∃n∈N∀m>nΨ(m) = 0}
D̃H = {Ψ ∈ F0 |Ψ(n) ∈ D(H)⊗ . . .⊗D(H) ∀n}

where F0 is the set of �nite particle vectors. For Ψ ∈ D̃H we de�ne

(dΓ(H)Ψ)(n) = (H ⊗ 1⊗ . . .⊗ 1+ 1⊗H ⊗ 1⊗ . . .⊗ 1+ . . .)Ψ(n).

This is called second quantization. A similar construction can be done for unitaries U on
H where

(Γ(U)Ψ)(n) = (U ⊗ . . .⊗ U)Ψ(n)

is said second quantization with

Γ(eitH) = eit dΓ(H).
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Now in order to de�ne creation and annihilation operators, we need the number operator
which is given by N = dΓ(1). For Ψ ∈ H⊗n+ we obviously have NΨ = nΨ. Note that N
is essentially self-adjoint on F0. Sadly, N is a global observable whereas the lab setting
obviously is local so on its own it is not as useful. This is why we de�ne the annihilation
operator on F+(H) with domain F0 to be

A(f) =
√
N + 1b−(f).

For each Ψ,Φ ∈ F0 we have

〈Ψ, A(f)Φ〉 = 〈Ψ,
√
N + 1b−(f)Φ〉 = 〈

√
N + 1Ψ, b−(f)Φ〉 = 〈S(b−(f))∗

√
N + 1Ψ,Φ〉

which implies that creation operator is given by

A∗(f) = (A(f))∗ = S(b−(f))∗
√
N + 1 =

√
NSb+(f).

It is worth noting that both A(f) and A∗(f)|F0 are closable. We denote their closures by
A(f) and A∗(f).

Example 2.14. Consider a topological space with Borel measure (M,µ) and the asso-
ciated Hilbert space H = L2(M,µ). By [RS80, Chapter II.4], we then have

H⊗n = L2(M × . . .×M︸ ︷︷ ︸
n arguments

, µ⊗ . . .⊗ µ) H⊗n+ = L2
S(M × . . .×M,µ⊗ . . .⊗ µ)

where L2
S is the set of symmetric functions13. The operators A and A∗ are given by

(A(f)Ψ)(n)(m1, . . . ,mn) =
√
n+ 1

∫
M
f(m)Ψ(n+1)(m,m1, . . . ,mn) dµ(m)

(A∗(f)Ψ)(n)(m1, . . . ,mn) =
1√
n

n∑
j=1

f(mj) ·Ψ(n−1)(m1, . . . , m̂j
skip

, . . . ,mn).

De�nition 2.15. The Segal quantization over H on F0 is de�ned via

H 3 f 7−→ ΦS(f) =
1√
2

(A(f) +A∗(f)) ∈ F+(H).

Note that the Segal quantization is R-, but not C-linear since f 7→ b−(f) is an antilinear
map.

Theorem 2.16 ([RS75], Theorem X.41). The following statements hold.

(a) (Self-adjointness). For all f ∈ H, ΦS(f) is essentially self-adjoint on F0.

13This means that L2
S is the set of functions in L2 which are invariant under permutations of the

coordinates.
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(b) (Cyclicity of the vacuum). For the vacuum Ω = 1⊕ 0⊕ 0⊕ . . .

span{ΦS(f1) · · ·ΦS(fn)Ω | f1, . . . , fn ∈ H, n ∈ N} ⊂ F+(H)

is dense.

(c) (Commutation relations). For each Ψ ∈ F0, f, g ∈ H we have

[ΦS(f),ΦS(g)]Ψ = i Im〈f, g〉HΨ.

Further, for the unitary operator w(f) = exp(iΦs(f)) (Weyl operator) we have

W (f + g) = e−i Im〈f,g〉W (f)W (g).

(d) (Continuity). If fn → f in H, then

W (fn)Ψ→W (f)Ψ for all Ψ ∈ F+(H)

ΦS(fn)Ψ→ Φs(f)Ψ for all Ψ ∈ F0

(e) (Covariance condition). For all unitary operators U on H,

Γ(U) : D(ΦS(f))→ D(ΦS(Uf))

and for Ψ ∈ D(ΦS(Uf)) we have

Γ(U)(ΦS(f))Γ(U)∗Ψ = ΦS(Uf)Ψ

for all f ∈ H.

We can now use the Segal quantization to de�ne the free Hermitian scalar �eld of
mass m. To this end note that we can write ΦS =

√
2 ReA∗ which is (almost) the same

expression we have already used in Proposition 2.11 to rewrite solutions to the Klein-
Gordon equation in a distributional sense. The only di�erence is the quantity A which
is now an operator rather than a function (and complex conjugation becomes taking
adjoint). Hence with the map E from Equation (2.13), which was given by

E : S (R4)→ L2(Hm) f 7−→
√

2π f̃ |Hm

using the 4-dimensional Fourier transform

f̃(k) =
1

(2π)2

∫
R4

f(x)eiη(x,k) dx,

the free Hermitian scalar �eld of mass m now is de�ned to be

Φm(f) = ΦS(Ef) =
√

2 ReA∗(Ef)
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on f ∈ S (R4,R) and

Φm(f) = ΦS(Re(f)) + iΦS(Im(f))

for arbitrary f ∈ S (R4). Applying the reasoning from Proposition 2.11 we see that
formally this Φm(f) is an operator-valued solution of the Klein-Gordon equation. Exact
reasoning leads to the following theorem.

Theorem 2.17 ([RS75], Theorem X.42). The 5-tuple(
Hm, F0,Φm,Ω,Γ

(
U(·, ·)

))
is a Wightman quantum �eld where Hm = F+(L2(Hm)) is the Hilbert space of the free
�eld and (

U(b,Λ)Ψ
)
(p) = eiη(Λ,b)Ψ(Λ−1p)

is the unitary representation of the restricted Poincaré group on L2(Hm,Ωm). Further

Φm

(
(�+m2)f

)
= 0

holds for each f ∈ S (R4).

Proof. Most of the statement can be derived easily from earlier results, like the discus-
sion of the Klein-Gordon equation in Sec. 2.2 or properties of the Segal quantization in
Theorem 2.16. Only a few properties (like self-adjointness) require more work. In those
cases we refer the reader to the corresponding proof in [RS75].

Here, Φm is also called the free �eld.

Remark 2.18 (Free Hamiltonian). Following the reasoning from Remark 1.25 we can
de�ne the free Hamiltonian of the theory (in the inertial system in which we are at rest)
as the generator of the time translations, i.e. as the self-adjoint operator H0 satisfying

Γ
(
U(te0,1)

)
= exp(itH0), ∀t ∈ R.

Using the properties of second quantization Γ(U) this can be rewritten as

H0 = dΓ(P0) with (Pψ)(ω(k), k) = ω(k)ψ(k, ω(k)),

where ψ ∈ L2(Hm, ωm) has to be chosen such that Pψ is square-integrable again. This
gives the domain of P0. We come back to H0 in Remark 2.24, where we derive a di�erent
expression for it which is more familiar from the physics literature.

In Sec. 2.2 we have used the freedom to rewrite functions on the mass shell as functions
on R3 by using the unitary operator J : L2(Hm,Ωm)→ L2(R3) from Proposition 2.5. We
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2 The Free Scalar Field

can do the same with the �eld operators by applying the second quantization of J to
Φm(f). For real-valued f this leads to

Φ̃m(f) = Γ(J)Φm(f)Γ(J)∗ =
1√
2

(a(Ef) + a∗(Ef))

with the creation and annihilation operators a∗, a on F+

(
L2(R3)

)
. We have used lower

case letters here, in order to make it easier to distinguish them from the corresponding
operators on F+

(
L2(Hm,Ω)

)
. The relations to the latter are

Γ(J)A(f)Γ(J)∗ = a
(f ◦ j√

ω

)
Γ(J)(A(f))∗Γ(J)∗ = a∗

(f ◦ j√
ω

)
.

Note that these are operators on F+

(
L2(R3)

)
. As before the �nite particle vectors F0 ⊂

F+

(
L2(R3)

)
form the domain of these operators. In slight abuse of notation we here

have kept the same symbol (F0) we have already used for the �nite particle vectors in
F+

(
L2(Hm,Ωm)

)
, although strictly speaking both sets are di�erent.

We now turn to the question whether we can evaluate Φ̃m at spacetime events rather
than test functions. The answer, basically, is yes, but the result of such an evaluation is
not an operator. To explain the details we need some preparations. (Also note that we
only treat the case Φ̃m. The mass shell based �eld Φm can be treated similarly. To work
out the corresponding details is left as an exercise to the reader).
On the domain

DS = {Ψ ∈ F0 |Ψ(n) ∈ S ((R3)n) for all n} (2.16)

we can de�ne the annihilation operator ak at momentum k via

(a(k)Ψ)(n)(k1, . . . , kn) =
√
n+ 1Ψ(n+1)(k, k1, . . . , kn), (2.17)

which is a well-de�ned operator and related to a(f) with test function f ∈ L2(R3) by the
following Proposition.

Proposition 2.19. For all f ∈ L2(R3) the annihilation operator a(f) can be written as

a(f) =

∫
R3

f(k)ak dk

with ak from Eq. (2.17).

Proof. This is straightforward and again left as an exercise.

Basically, we would like to do something similar, but if we try to calculate the adjoint
a∗k of ak formally we get

(a∗(k)Ψ)(n)(k1, . . . , kn) =
1√
n

n∑
j=1

δ(k − kj)Ψ(n−1)(k1, . . . , k̂j . . . , kn) (2.18)
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with the obvious problem that δ occurs, so a∗(·) is not a densely de�ned operator. We
can rectify this by using quadratic forms.

Remark 2.20 (Quadratic forms. [RS80], Sec. VIII.6). A quadratic form q on a Hilbert
space H is a map q : Q(q)×Q(q)→ C, where Q(q) ⊂ H is a dense, linear subspace (the
form domain), and q is linear in the second and conjugate linear in the �rst argument. If
X is an operator with dense domain D(X) we can immediately de�ne a quadratic form
X[φ, ψ] = 〈φ,Xψ〉 with domain D(X). The converse is not true. There are quadratic
forms which do not belong to an operator (we will see an example very soon). Hence,
quadratic forms are more singular objects than operators. Nevertheless the notation
〈ψ, qφ〉 is frequently used for q[ψ, φ] even if q is not an operator. In the following we will
use the phrase �X and q coincide in the sense of quadratic forms� for an operator X and
a quadratic form q if q[ψ, φ] = 〈ψ,Xφ〉 holds for all ψ, φ in an appropriate domain.

Now assume a∗k would exist as an operator. Then we could assign it to the quadratic
form

a∗k[ψ, φ] = 〈ψ, a∗kφ〉 = 〈akψ, φ〉 ψ, φ ∈ DS

Hence, although a∗k is not an operator the quantity on the right-hand side of this equation
only uses ak and is therefore well-de�ned. We use this expression as the de�nition of a∗k
as a quadratic form. Now in analogy to Proposition 2.19 we get the following.

Proposition 2.21. For all f ∈ L2(R3) we have

a∗(f) =

∫
R3

f(k)a∗k dk

in the sense of quadratic forms.

Proof. Again, this is straightforward.

Now, we can apply this to the �eld Φ̃m and get the following result.

Theorem 2.22. The quantity

Φm(t, x) =
1

(2π)3/2

∫
R3

(
ei(ω(k)t−kx)a∗k + e−i(ω(k)t−kx)ak

) d3k√
2ω(k)

(2.19)

is a well-de�ned quadratic form on F+

(
L2(R2)

)
with domain DS . For a test function

f ∈ S (R4) it is related to the �eld Φ̃m(f) by

Φ̃m(f) =

∫
R4

f(x, t)Φm(x, t)dx dt.

Proof. The fact that Φm(t, x) is a well-de�ned quadratic form is obvious from the de�ni-
tions. The relation to Φm(f) can be cheked with the arguments already used in the proof
of Proposition 2.11. [In a future version of these notes I might expand this proof.]
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Remark 2.23 (Wick ordering). For this remark, cf. [Haa96, Chapter I.5.2]. The idea to
use quadratic forms in order to evaluate quantities at spacetime events can be extended
to powers of the �eld like Φn(t, x) or more generally expressions involving polynomials
in the ak, a

∗
k. If we look in particular at (a∗k)

n(ak)
m we can easily use the same idea as

above and just �move all a∗k to the left under the scalar product�:

〈φ, (a∗k)n(ak)
mψ〉 = 〈(ak)nφ, (ak)mψ〉 =: (a∗k)

n(ak)
m[φ, ψ]. (2.20)

If we change the ordering of the ak, a
∗
k, however this procedure fails. In the product aka

∗
k

we can not move a∗k �to the left� since ak and a∗k are not commuting. Hence we have to
move ak �rst which would produce an (unde�ned) operator a∗k in the left argument of
the scalar product. To understand the problem we are facing let us see what happens if
we calculate the vaccum expectation value 〈Ω, aka∗kΩ〉 of aka∗k with the formal expression
from Eq. (2.18).

〈φ, aka∗kψ〉 = 〈a∗kΩ, a∗kΩ〉 =

∫
R3

δ2(k − p)dp.

The integral on the right-hand side involves the square of the delta function which can
not be de�ned within distribution theory. Hence, the given vacuum expectation value
is just in�nite. Usually, physical quantities like energy should have vacuum expectation
value zero (naively speaking, the vacuum should just mean no physical particles). In that
sense the in�nities we see are just artifacts arising from wrong operator ordering. To
get the real physical quantities we just have to subtract these in�nities, and this can be
done by choosing the correct operator ordering. The only ordering where no problems
in terms of ini�nities arise is the one in Eq. (2.20). Hence the simple rule is: Whenever
we encounter a monomial in ak, a

∗
k is: �move all creation operators to the left�. This is

known as Wick or normal ordering and usually indicated by colons written to the left
and the right of an expression. E.g. to calculate : Φ(t, x)n : we formally expand Φ(t, x)n

into a polynomial of ak, a
∗
k and in any monomial we get that way, we move all a∗k to the

left.

Remark 2.24 (Operator ordering and quantization). Operator ordering problems as the
ones just described are not uncommon in quantum theory and already happen within
the quantization of one non-relativistic particle. The (too) simple rule which tries to map
classical observables (functions on phase space) to quantum observables (operators on
a Hilbert space) is to replace the canonical phase space coordinates qj , pk by position
and momentum operators Qj , Pk and to replace each occurence of qj , pk in a phase space
function F by these operators. But even if F is just a polynomial in qj , pk this procedure
is ambiguous since the qk, pk mutually commute such that qjpj = pjqj while QjPj and
PjQj are di�erent operators. Hence, we need additional (physical) arguments in order to
make the operator ordering unambiguous. In the given example we might want to use
1
2(QjPj + PjQj) since this combination is at least hermitian.
Based on these considerations we can describe the basic quantization rule for scalar

�elds as follows:

1. Rewrite a classical �eld observable (i.e. a function F : M→ R on classical phase
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spaceM; cf. the disicussion in Remark 2.13) as a polynomial in the complex valued
phase space variables a(k), a(k).

2. Replace these functions by the creation and annihilation operators (or more pre-
cisely quadratic forms) ãk, ã

∗
k. (Note that we are adding a tilde to the operators

here in order to make the distinction from the functions a, a easier. We will drop
this tilde after this remark is �nished).

3. Apply Wick ordering, in order to get rid of operator ordering ambiguities and the
corresponding in�nities. The choice of ãk, ã

∗
k as the proper replacement of a(k), a(k)

is motivated by a comparison of the commutation relations between ãk, ã
∗
k on the

one hand and the Poisson relations between a(k) and a(k) on the other.

This receipt provides a clear rule to turn any polynomial in a(k), a(k) into a quadratic
form on the Hilbert space F+

(
L2(R3)

)
. If we apply it to the classical solution of the

Klein-Gordon Equation from (2.8) we get the quantum �eld Φ(t, x) as written in Eq.
(2.19). Another possible application is the classical Hamilton function h(a, a) from Eq.
(2.15).

:h(ãk, ã
∗
k) : =

∫
R3

ω(p) :
1

2
(ã∗kãk + ãkã

∗
k)︸ ︷︷ ︸

harmonic oscillator

: dp =

∫
R3

ω(k)ã∗kãk dp = H0

Please check yourself that (as a quadratic form) this really coincides with the free Hamil-
tonian H0 from Remark 2.18. Also note in this context that the number operator N can
be given by a similar expression as

N =

∫
R3

ã∗pãp dp.

Finally note that exactly the same discussion can be given in terms of the mass shell
functions A(λ), A(λ) and the corresponding quadratic forms Ãλ, Ãλ on F+

(
L2(Hm,Ωm)

)
.

Working this out is left as an exercise.

For the last point in this section we have to talk about are the Wightman distributions
of Φm(t, x). They are calculated in the next theorem.

Theorem 2.25. For m,n ∈ N0 with m > 1 the Wightman distributions of the free �eld
Φm from Theorem 2.17 are given by W (2n+1) = 0 and

W (2m)(f1 ⊗ . . .⊗ f2m) =
∑
σ∈pair

W (2)(fσ(1) ⊗ fσ(2)) . . .W
(2)(fσ(2n−1) ⊗ fσ(2m)) (2.21)

where pair ⊂ S2n is the set of permutations which satisfy σ(1) < σ(3) < . . . < σ(2n−1)

and σ(2k+1) < σ(2k+2) for k > 0. The two-point function W (2) is given by

W (2)(f ⊗ g) =
1

2(2π)3

∫
Hm

∫
R4

∫
R4

eiη(y−x,p)f(x)g(y) dx dy dΩm(p),
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which can formally be rewritten as

W (2)(f ⊗ g) =
1

i

∫
R4

∫
R4

∆+(y − x,m2)f(x)g(y) dx dy

where

∆+(x,m2) =
i

2(2π)3

∫
eiη(x,p) d

3p

ω(p)
.

Proof. The combinatorial structure of the W (n) given here is a consequence of the struc-
ture of the Segal quantization and therefore not special to the free �eld. A corresponding
proof can be given using Wick's theorem. Typically, this is left as an exercise. In lack of
a good reference I am following this tradition. Please check validity of (2.21) yourself. To
calculate the two-point function we use Ef =

√
2πf̃ and further get

W (2)(f ⊗ g) = 〈Ωm,Φm(f)Φm(g)Ωm〉 = 〈Φm(f)Ωm,Φm(g)Ωm〉

=
2π

2
〈a∗(f̃), a∗(ĝ)〉 =

2π

2
〈f̃ , g〉L2(Hm)

=
2π

2

∫
Hm

1

(2π)2

∫
R4

e−iη(x,p)f(x) dx
1

(2π)2

∫
R4

eiη(y,p)g(y) dy dΩm(p)

=
1

2(2π)3

∫
Hm

∫
R4

∫
R4

eiη(y−x,p)f(x)g(y) dx dy dΩm(p)

Written formally, this yields

W (2)(f ⊗ g) =
1

i

∫
R4

∫
R4

∆+(y − x,m2)f(x)g(y) dx dy

where

∆+(x,m2) =
i

2(2π)3

∫
eiη(x,p) d

3p

ω(p)
,

as claimed.

Fields with this structure of the n-point functions are called generalized free �elds or
quasi-free.

Theorem 2.26 (Källen-Lehmann-representation). Let W (2) be the two-point function of
a �eld theory satisfying the Wightman axioms and the additional condition that

〈ψ0, ϕ(f)ψ0〉 = 0

for all f ∈ S (R4). Then there exists a polynomially bounded positive measure on [0,∞)
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so that for all f ∈ S (R4),

W (2)(f) =

∫ ∞
0

(∫
Hm

f̃ dΩm

)
dρ(m).

Symbolically,

W (2)(x) =

∫ ∞
0

1

i
∆+(x,m2) dρ(m).

Proof. [RS75, Theorem IX.34]

2.4 Time-Zero Fields

Before we can de�ne the time-zero �eld, we need the following short result.

Proposition 2.27. For f ∈ S (R3) we de�ne the dual space element δf ∈ S ′(R4) via

(δf)(g) :=

∫
R4

δ(t)g(t, x)f(x) dt dx =

∫
R3

g(0, x)f(x) dx.

Then the map E from (2.13) can be extended to distributions of the form δf .

Proof. Using the de�nition of δf we get

(E(δf))(ω(k), k) =
1

(2π)3/2

∫
R4

δ(t)f(x)eiω(k)te−ik·x dt dx

=
1

(2π)3/2

∫
R3

f(x)e−ik·x dx = f̂(k),

so E(δf)(j(k)) = f̂(k) with j from (2.2).

De�nition 2.28. We de�ne the time-zero �elds to be

ϕm(f) = ΦS(E(δf)) πm(f) = ΦS(iωE(δf))

for f ∈ S (R3,R) and its C-linear extension onto all of S (R3).

As in the spacetime �eld Φm we can use the unitary Γ(j) to transform ϕm and πm
into operators on F+

(
L2(R3)

)
. We de�ne

ϕ̃m(f) = Γ(J)ϕm(f)Γ(J)∗ and π̃m(f) = Γ(J)πm(f)Γ(J)∗.

In analogy to Theorem 2.22 we can express ϕ̃m(f) and π̃m(f) as �smeared out versions�
of appropriately chosen quadratic forms.
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Proposition 2.29. The time-zero �elds ϕ̃m, π̃m can be written in terms of ak and a∗k
as quadratic forms via

ϕ̃m(f) =

∫
f(x)ϕm(x) dx

where

ϕm(x) =
1

(2π)3

∫
R3

(
e−ik·xa∗k + eik·xak

) dk√
2ω(k)

and

π̃m(g) =

∫
R3

g(x)πm(x) dx

with

πm(x) =
i

(2π)3/2

∫
R3

ω(k)
(
e−ik·xa∗k − eik·xak

)√ω(k)

2
d3k.

Proof. In the case of ϕ̃m this follows immediately from Theorem 2.22 by setting t = 0.
In the case of π̃m we use (2.19) and take a time derivative to get

∂tΦm(t, x) =
i

(2π)3/2

∫
R3

(
ω(k)ei(ω(k)t−kx)a∗k − ω(k)e−i(ω(k)t−kx)ak

) d3k√
2ω(k)

and thus

(∂tΦ̃m)(f) = Φ̃m(iωf) = Γ(J)ΦS(ωE(if))Γ(J)+.

Hence, setting t = 0 again leads to the statement about π̃m.

Remark 2.30 (Time evolution). We can look at the �elds ϕm(x) and πm(x) as local
observables which we can evolve in time (i.e. we are in the Heisenberg picture). With the
free Hamiltonian H0 from Remark 2.18 we can de�ne

e−itH0ϕm(f)eitH0 = ϕm,t(f) e−itH0πm(g)eitH0 = πm,t(g).

This again yields

e−itH0ϕm(x)eitH0 =
1

(2π)3

∫
R3

(
e−ik·x e−itH0a∗ke

itH0︸ ︷︷ ︸
=eitω(k)a∗k

+eik·xe−itH0ake
itH0

) dk√
2ω(k)

= Φm(t, x).

In other words we can reconstruct the spacetime �eld Φm(x, t) from the time-zero �eld
and time evolution, which in turn is part of the representation Γ

(
U(b,Λ)

)
of the Poincaré
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group. This observation leads to the question whether we can turn this into a strategy
to costruct new models from a set of time-zero �elds and a representation of P↑+, or at
least a Hamiltonian. The latter depends on physical input like the type of interactions
we want to describe. For the �elds, however, we'd like to have a universal construction,
which is completely independent from any dynamical input. We might even hope that
the time-zero �elds developed for the free �eld are already su�cient. To explain up to
which degree this idea works or does not work is the main task of the rest of this section.

Remark 2.31 (Canonical commutation relations). To understand the last remark a
bit better, let us have a short look at the quantum mechanical description of N non-
relativistic particles. The Hilbert space of this system is L2(Rn) with n = 3N and the most
important observables are position and momentum described by self adjoint operators
Qj , Pk which are de�ned for ψ ∈ S (Rn) and x ∈ Rn by

(
Qjψ

)
(x) = xjψ(x),

(
Pjψ

)
(x) =

1

i

∂ψ

∂xj
(x). (2.22)

The Qj and Pk should be reagarded as a the �nite degree of freedom analog of the time-
zero �elds ϕm(x), πm(x). The most important structural property of the Qj , Pk are the
canonical commutation relations, which (in their most elementary form) are given as

[QjQk]ψ = [Pj , Pk]ψ = 0, [Qj , Pk]ψ = iδjkψ (2.23)

for any ψ ∈ S (Rn). These relations are the main reason why the Qj and Pk are chosen
in the given way: We are following Dirac's quantization rule which says: �Quantization
means to replace Poisson brackets by operator commutators�. The Qj and Pk should
be the quantum analogs of position and momentum coordinates qj , pk of the classical
phase space Rn × Rn and the relations in (2.23) exactly resemble the Poisson relations
between qj and pk. Large parts of the physics literature even tell the legend that up to
unitary equivalence the Qj , Pk from Eq. (2.22) are the only possible choice for operators
satisfying the commutation relations in (2.23). If we assume for the moment that this
is true (we will come to that in a minute), and if we accept that the CCRs in (2.23)
are mandatory requirements, we can conclude that the operators in (2.22) are the only
possible choice � completely independent from the dynamics our model should obey. The
latter is completely contained in the Hamiltonian of the system.
What can we learn from this for �eld theory? First of all note that the expressions

for ϕm(x) and πm(x) in Proposition 2.29 resemble Eqs. (2.9) where we have expressed
the intial data (f, p) ∈ M for the classical solution in terms of the complex variables
a, a. According to the discussion in Remark 2.24 the �elds ϕm(x) and πm(x) are the
quantizations of the canonical phase space variables f(x) and p(x). Since the latter are
the �eld thoeretic replacement of phase space coordinates qj , pk (cf. our discussion in
Remark 2.13) this observation justi�es the claim that ϕm(x) and πm(x) are the �eld
theoretic analogs of the operators Qj , Pk. Hence let us have a look at the commutation
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relations they satisfy:

[ϕ̃m,t(f), ϕ̃m,t(g)]ψ = [π̃m,t(f), π̃m,t(g)]ψ = 0 [ϕ̃m,t(f), π̃m,t(g)] = i〈f, g〉, (2.24)

where on the right-hand side of the second equation we have used the scalar product in
L2(R3), and ψ ∈ F0 is chosen arbitrarily. Rewriting this in a formal way we get the more
often used form

[ϕm,t(x), ϕm,t(y)] = [πm,t(x), πm,t(y)] = 0 [ϕm,t(x), πm,t(y)] = iδ(x− y). (2.25)

The latter version can be regarded as the natural �continuous variable version� of the
relations in (2.23). Therefore we proceed in analogy to the �nite degree of freedom case
as follows. We declare the CCRs in Eq. (2.25), or maybe better the mathematically more
rigorous version in (2.24), as the fundamental quantization condition each choice of time-
zero �elds (for scalar �eld theories) should satisfy. If there would be again a uniqueness
result, the time-zero �elds constructed for the free �eld would be the only choice and we
could proceed along the lines outlined in Remark 2.30. The big amounts of subjunctives
in the last sentence already indicate that there is a problem with this procedure to explain
why we have to clarify �rst, in which sense the Qj and Pk are really unique. This step is
prepared by the following de�nition.

De�nition 2.32. Consider a locally convex, real vector space V which also carries a real
scalar product 〈·, ·〉, and strongly continuous maps f 7→ U(f), g 7→ V (g) from V into the
unitary group U(H) of a separable Hilbert space H. If for all f1, f2 ∈ V the operators
U, V satisfy the Weyl relations

V (f1 + f2) = V (f1)V (f2)

U(f1 + f2) = U(f1)U(f2)

V (f)U(g) = U(g)V (f) exp(〈f, g〉),

then {U, V } is called a representation of the Weyl relations over V .

Example 2.33 (Schrödinger representation). The central reference for all statements
concerning the Schrödinger representation is the book of Folland [Fol16]. Consider V =
Rn and the operators Qj , Pk from Eq. (2.22). Real linear combinations of the Qj and
of the Pk are self-adjoint operators (on appropriate domains containing S (Rn) as a
subspace). Hence with f, g ∈ Rn we can de�ne

U(f) = exp

(
i

n∑
j=1

fjQj

)
, and V (g) = exp

(
i

n∑
k=1

gkPk

)
. (2.26)

By Stone's theorem [RS80, Sec. VIII.4] these maps are strongly continuous. It is also
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easy to check that

(
U(f)ψ

)
(x) = exp

(
n∑
j=1

xjfj

)
ψ(x), and

(
V (g)ψ

)
(x) = ψ(x+ g)

hold. From the last equation it is easy to see that the U(f), V (g) satisfy the Weyl
relations. Hence the maps Rn 3 f 7→ U(f) and Rn 3 g 7→ V (g) form a representation of
the Weyl relation, which is called the Schrödinger representation. A deeper analysis also
shows that this representation is irreducible, i.e. the only bounded operators commuting
with all U(f) and V (g) are multiples of the identity.

Theorem 2.34 (Stone-von Neumann). The Schrödinger representation is the only irre-
ducible representation of the Weyl relations over Rn up to unitary equivalence.

Proof. See [RS80, Thm VII.I.14].

Remark 2.35 (Canonical commutation relations). Assume self-adjoint operators Qj , Pk
are given such that

1. we can de�ne U(f), V (g) as in Eq. (2.26),

2. these U(f), V (f) are representation of the Weyl relations and

3. they are irreducible, then we can conclude according to the Stone-von Neumann
theorem that these Qj , Pk are unitarily equivalent to the choice in Eq. (2.22).

In that case the relations in (2.23) are an easy consequence of the Weyl relations. We will
rephrase this situation in the following by saying the Qj , Pk satisfy the Weyl form of the
CCR. If, however, we only know that the Qj , Pk are self-adjoint and satisfy the relations
in (2.23) we can not deduce the Weyl relations. All corresponding calculations you might
�nd are formal and can not be made rigorous without additional assumptions. In general,
(2.23) is not even su�cient to gurantee that U(f) and V (g) can be de�ned according
to (2.26). As a consequence, there actually are examples for self-adjoint operators Q,P
satisfying (2.23), which are not unitarily equivalent to the version in (2.22); cf. [RS80,
Sec. VIII.5].
With this remark we can return to the time-zero �elds. We de�ne a corresponding

representation of the Weyl relations � this time over V = S (R3) rather than V = Rn

and ask for uniqueness. The depressing answer is given in the next theorem.

Theorem 2.36. Let ϕm, πm be the time-zero �eld and conjugate momentum of the free
scalar �eld of mass m. Then

Um(f) = exp(iϕm(f)) Vm(g) = exp(iπm(g))

is an irreducible representation of the Weyl relations over S (R4,R). Further, (Um1 , Vm1)
and (Um2 , Vm2) are unitarily inequivalent if the masses are di�erent, so if m1 6= m2.

Proof. [RS75, Thm X.46].
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Remark 2.37 (Interpretation). The theorem shows that we actually can consider the
Weyl form of the CCR as a mandatory requirement for time-zero �elds, but this does not
lead to a unique choice. Even worse, the example for inequivalent representations given
depend on the mass. But mass is a dynamical parameter since it labels di�erent versions
of the �eld equations. Hence the representations of the Weyl realtions we have to deal
with in �eld theory does contain dynamical information.

Remark 2.38 (Time evolution again). The failure of unitary equivalence has another
striking consequence concerning time evolution. To explain what we've just lost, let us
have another look at the �nite degree of freedom case. Here we can look at the observables
Qj , Pk in the Heisenberg picture and time-dependent operators

Qj(t) = exp(−itH)Qk exp(itH), Pk(t) = exp(−itH)Pk exp(itH),

where H is a self-adjoint operator and the Hamiltonian of the model. If we assume the
other way round that time-dependent, self-adjoint operators Qj(t), Pk(t) are given which
satisfy the Weyl form of the CCR at each instance of time, we can conclude from the
Stone-von Neumann theorem that there is a unitary T (t) satisfying T (t)Qj(0)T (t)∗ =
Qj(t) and T (t)Pk(0)T (t)∗ = Pk(t). It is still unclear (without further knowledge) whether
these U(t) are given as exp(−itH) in terms of a Hamiltonian H, but at least we know
that the time evolution is given by unitaries on the same Hilbert space.
The lack of uniqueness in the �eld theoretical case indicates therefore that we can not

expect that time evolution is unitary. This leads to the urgent question whether we can
preserve uniqueness of the Weyl relations at least on a more abstract level. The rest of
this section is devoted to an answer of this question. As a preparation we need some
material about C*-algebras.

De�nition 2.39. Consider the space B(H) of bounded operators on a (not necessarily
separable) Hilbert space H. A linear subspace A which is closed under products14 and
adjoints15 is called a C*-algebra.

De�nition 2.40. An invertible linear map α : A1 → A2 between two C*-algebras A1,
A2 is called *-isomorphism if α(AB) = α(A)α(B) and α(A∗) = α(A)∗ holds for all
A,B ∈ A1. If A1 = A2 = A, the map α is called *-automorphism.

Remark 2.41 (C*-algebras). The central references for all statements about C*-algebras
are the books of Bratteli and Robinson [BR12; BR02]. The following is a short list of
additional remarks.

1. C*-algebras can be de�ned alternatively in an abstract way. We have chosen the
explicit form as algebras of operators since it leads us more directly to the desired
goal.

2. C*-algebras are in particular *-algebras. Hence all the corresponding material from
Sec. 1.3 applies. This in particular concerns states and representations.

14A,B ∈ A ⇒ AB ∈ A
15A ∈ A ⇒ A∗ ∈ A
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3. Consider the GNS representation (Hω, Dω, πω,Ωω) of a state ω of a C*-algebra A.
4. In the de�nition of *-isomorphisms we haven't added any boundedness require-

ments, because this is not necessary. All *-isomorphisms α satisfy ‖α(A)‖ = ‖A‖
for all A ∈ A1. Hence they are automatically bounded (‖ · ‖ here denotes the
operator norm).

De�nition 2.42. Consider a real pre-Hilbert space (K, 〈 · , · 〉) which is also a locally
convex space, and a representation {U, V } of the Weyl relations. The smallest C*-algebra
A containing the operators U(f), V (g) for all f, g ∈ K is called the Weyl-algebra of
{U, V }.

Theorem 2.43. The Weyl algebras A1, A2 of two representations {U1, V1} and {U2, V2}
over the same space (K, 〈 · , · 〉) are *-isomorphic. More precisely, there is a *-isomorphism
α : A1 → A2 with α

(
U1(f)

)
= U2(f) and α

(
V1(g)

)
= V2(g) for all f, g ∈ K.

Proof. [BR02, Theorem 5.2.8]

Remark 2.44 (Interpretation). Assume that by some construction we got time-zero
�elds ϕt and πt which by all instances of time satisfy the Weyl form of the CCR, then
by the previous theorem we get a family of *-isomorphisms α(t) with αt

(
exp(iϕ0(f))

)
=

exp(iϕt(f)) and similarly for πt. These αt take the role of the unitaries T (t) from Remark
2.38, and therefore we can hope for a dynamical description of �eld theories in terms of
automorphisms of C*-algebras, rather than unitaries on Hilbert spaces. Or to formulate
this in another way: The Hilbert space structure which served us well in quantum me-
chanics is too rigid for �eld theory and has to be replaced by C*-algebras. This point
of view is quite successful at least on the conceptual side; cf. the book of Haag [Haa96]
for an in-depth discussion of this point of view. For constructive purposes, however, our
problems are not completely solved. It might (and does) in particular happen that time-
zero �elds do not exist at all, since their existence is not a consequence of the Wightman
axioms. For the most non-trivial example of an interacting model � quartic self interac-
tions in 1+1 dimensions � the material developed so far is su�cient. We consider this
case in the next chapter.
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3 Interactive Fields

3.1 Naive Approach

For the �rst part of this chapter, we orient ourselves towards [RS75, p.233 �.]. An �in-
teracting �eld theory� is a �eld theory satisfying the Wightman axioms which has a
nontrivial scattering theory. A natural way to construct such �elds (cf. the discussion in
the last section; in particular Remark 2.30) is to try to make a pertubation of some free
theory, so

ϕt(x) = e−itHϕ(x)eitH πt(x) = e−itHπ(x)eitH

for some Hamiltonian H. This works if H is self-adjoint but otherwise most likely breaks
the Poincaré invariance.
In classical Lagrangian �eld theory the simplest Hamiltonians are of the form

H = H0 + λ

∫
R3

F (ϕ(x)) dx︸ ︷︷ ︸
=HI

where F is some function, say a polynomial with some coupling constant λ. Since we want
the Hamiltonian to be bounded below, we expect that the polynomial is of even order
with positive highest coe�cient. The most simple non-trivial case then is F (x) = x4, so

H = H0 + λ

∫
R3

ϕ(x)4 dx.

This expression does not make sense unless we consider the Wick-ordered case (see Chap-
ter 2.3)

H = H0 + λ

∫
R3

:ϕ(x)4 : dx,

which is at least a quadratic form. Unfortunately, this quadratic form does not arise from
an operator since formally computing HΩ “=“ Ψ for Ψ(n) = 0 if n 6= 4 gives

Ψ(4)(k1, . . . , kn) =

∫
R3

exp
(
− ix

∑4
i=1 ki

)
∏4
i=1(2π)3/2(2ω(ki))1/2

dx =
δ
(∑4

i=1 ki

)
(2π)9/2

∏4
i=1(2ω(ki))1/2

which certainly is not in L2, alone because of the δ-function. This we can try to �x by
smearing with a test function, so

∫
R3

g(x) exp
(
− ix

∑4
i=1 ki

)
∏4
i=1(2π)3/2(2ω(ki))1/2

dx =
ĝ
(∑4

i=1 ki

)
(2π)9/2

∏4
i=1(2ω(k))1/2

,

but we still do not get an L2 function because ω(ki) grows too slowly at in�nity.
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3.2 The Cut-o� Hamiltonian

In order to obtain an operator, we restrict ourselves to one space dimension. The dis-
cussion of Wightman quantum �elds and the construction of the free �eld has to be
adopted accordingly. This is, however, staightforward and (again) left as an exercise for
the reader. We will try to sketch the idea of the construction of the (ϕ4)2 model from
[GJ68; GJ70a; GJ70b] and accompanying papers.
We replace the quadratic form

∫
R

: ϕ(x)4 : dx by
∫
R
g(x) : ϕ(x)4 : dx where g(x) is a

real-valued function in L2(R). So we have

Hg = H0 +HI(g) =

∫
R

ω(k)a∗kak dk +

∫
R

g(x) :ϕ(x)4 : dx− Eg

with domain

D(Hg) = DS = {Ψ ∈ F0 |Ψ(m) ∈ S (Rn·m)}.

Here the constant Eg, also called self energy of the vacuum, is chosen so that

0 = inf{spectrumHg}.

Further Eg is �nite because of the spatial cut-o� and because of the limitation to only
one space dimension.
For the sake of locality, for g one often chooses some smooth function of compact

support which equals one on a very large interval. Either way, the e�ect of g is to turn
o� the interaction for large values of x. Therefore, g is called the space cut-o� and H(g)
is called the spatially cut-o� Hamiltonian for the (ϕ4)2 �eld theory.

Theorem 3.1 ([RS75], Theorem X.62). The spatially cut-o� Hamiltonian Hg is essen-
tially self-adjoint for any g ∈ S (R,R).

Now the solution to the cut-o� �eld equation

∂2Φ

∂t2
− ∂2Φ

∂x2
+m2Φ + 4λgΦ3 = 0, (3.1)

also compare (2.4), is given by the �eld at time t

ϕt,g(x) = exp(−itHg)ϕ(x) exp(itHg)

with corresponding momentum at time t

πt,g(x) = exp(−itHg)π(x) exp(itHg).

Here ϕ(x) and π(x) are chosen to be the time-zero �elds of the free �eld. Please keep this
in mind, since this choice will cause considerable trouble below. Since translations a�ect
the cut-o� and therefore the �eld, this does not belong to a Wightman �eld because
it violates Lorentz invariance. The simplest idea would be to take the limit g → 1.
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Unfortunately, this means Eg → ∞ so our Hamiltonian does not converge in a proper
sense.

Figure 5: The �eld ϕt,g(x) in two-
dimensional space time. If
g(y) = 1 for |y| ≤ |x|+ |t|,
then the �eld is indepen-
dent of g. This means for
a time t1, we get an asso-
ciated interval (a, b) such
that ϕt,g(x) = ϕt(x) on
the subset of the rhombus
(a, b)× (−t1, t1).

However ϕt,g(x) is independent of g provided g(y) = 1 for |y| ≤ |x|+ |t| as is illustrated
in Figure 5. This is a consequence of the fact that the �eld equation (3.1) propagates
disturbances only with the speed of light (here set to 1), and therefore any changes to
g made �far outside� can not in�uence anything in the rhombical region shown in the
�gure. Using this idea we can prove thr following

Theorem 3.2. Consider t1 ∈ R+ and f1, f2 ∈ S (R), with support in a bounded interval
(a, b). Furthermore assume that g ∈ S (R,R) satis�es g(x) = 1 for all x ∈ (a−t1, b+t1). If
we choose the time-zero �elds ϕ(f1) and π(f2) of the free �eld we can de�ne the quantities

ϕt(f1) = exp(−itHg)ϕ(f1) exp(itHg)

πt(f2) = exp(−itHg)π(f2) exp(itHg)
(3.2)

for all t ∈ [−t1, t1]. They are self-adjoint operators (on an appropriate domain) and are
independent of the cut-o� g, provided it satis�es the given condition.

Proof. [GJ68, Sec. V] together with Lemma 3.2.2 and Theorem 3.2.6 of [GJ70a].

Hence, by choosing the interval, on which g(x) = 1 holds, large enough, we can de�ne
ϕt(f1) and πt(f2) for all t and all f1, f2 ∈ D(R)16. These �elds have the cut-o� removed.
From here on we can introduce spacetime �elds (i.e. �elds which are smeared over

space and time rather than over space at a �xed time) by �rst de�ning

Φg(f) =

∫
R

ϕt,g(ft)dt =

∫
R

f(t, x)ϕg(t, x)dx dt with f ∈ D(R2), ft( · ) = f(t, · ),

then proving that this leads to a closable operator admitting an invariant dense domain
[GJ70a, Theorem 3.2.3]. Using Theorem 3.2 we can show that this operator is independent
of g provided the support of f is contained in the rhombical region from Figure 5; cf.
[GJ70a, Thm 3.2.6]. In that way we get an operator-valued distribution on the Hilbert

16D(R) = {f ∈ C∞(R) | supp f compact}
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space F+

(
L2(R)

)
with an invariant dense domain we haven't speci�ed (cf. [GJ70a, Sect

3.2] for details; cf also [GJ70a, Thm 3.2.7] for the continuity requirements a distribution
has to satisfy).

D(R2) 3 f 7→ Φ(f) =

∫
R2

f(t, x)ϕ(t, x)dx dt, (3.3)

which �nally can be extended to test functions from S (R2), i.e. it is a tempered operator-
valued distribution [GJ70a, Sec. 3.4]. We can recover the time-zero �elds from Theorem
3.2 by restricting Φ and Φt to test �functions� δf ; i.e.

ϕt(f1) =

∫
R

f1(x)Φ(t, x)dx and πt(f2) =

∫
R

f2(x)∂tΦ(t, x)dx.

For the second equation cf. [GJ70a, Theorem 3.2.5]. Note that this shows in particular
that the free �eld and the �eld Φ just constructed share the time-zero �elds at t = 0.
Furthermore it can be shown that this Φ(f) satis�es the correct �eld equations (Theorem
3.2.5 and the following remark of [GJ70a]), is self-adjoint if f is a real-valued function
[GJ70a, Sec. 3.3], and is covariant with respect to spacetime translations [GJ70a, Sec.
3.6]. Furthermore, two operators Φ(f1) and Φ(f2) commute if the supports of f1 and f2

are spacelike separated [GJ70a, Sec. 3.5]. Hence we have almost constructed a Wightman
�eld. The most important property we haven't shown yet (apart from covariance with
respect to Lorentz boosts) is the existence of a vacuum, and actually, a vacuum vector
Ω ∈ F+

(
L2(R)

)
does not exist.

3.3 Haag's Theorem

The fact that the above approach did not work out is not surprising but this was predicted
by Haag's theorem which we will state now.

Theorem 3.3 ([Bog+90], Theorem 9.28). Let Φ,Φ0 be two scalar Wightman �elds acting
on Hilbert spaces H,H0. Assume for some instance of time t we have time-zero �elds

Φ(t, x), ∂tΦ(t, x) Φ0(t, x), ∂Φ0(t, x)

which are irreducible and there exists unitary T such that

TΦ(t, x)T ∗ = Φ0(t, x)

T∂tΦ(t, x)T ∗ = ∂tΦ0(t, x).
(3.4)

Then all Wightman functions up to n = 4 are identical. If Φ0 is a free �eld, then Φ is
also free �eld in the sense that all Wightman functions are identical.

We can choose for Φ the �eld constructed in (3.3) and the free �eld for Φ0. The method
outlined in the last section used the time-zero �elds for the free �eld to construct the
interacting �eld Φ. Hence we have Φ(0, x) = Φ0(0, x) and ∂Φ(0, x) = ∂Φ0(0, x); cf. the
de�nition of ϕt and πt in Eq. (3.2) and check that πt(x) = ∂tΦ(t, x) really holds (in this
context also cf. [GJ70a, Theorem 3.2.5]). Hence the condition in (3.4) is satis�ed for t = 0
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and T = 1. Since Φ0 is the free �eld and Φ is not, the latter can not be a Wightman
�eld. We are seeing here consequences of the non-uniqueness of representations of the
Weyl relations, as discussed in Sec. 3.3.

3.4 Remove the Cut-o�

The previous section clearly tells us that we have to come up with another construction
to remove the cut-o�. Although there is no vacuum vector for the �eld ϕt from (3.4),
there is a vacuum vector Ωg in F+

(
L2(R)

)
for Hg:

Theorem 3.4. For each cut-o� g there is (up to scalar multiples) a unique vector Ωg ∈
F+

(
L2(R3)

)
which is normalized (‖Ωg‖ = 1) and satis�es HgΩg = 0.

Proof. [GJ70a, Theorems 2.2.1 and 2.3.1]

As partially stated before, simply taking the limit g → 1 in the Fock space F+

(
L2(R3)

)
yields the following problems.

• Eg →∞ so the Hamlitonian does not converge

• Ωg → 0 in the weak sense

The way out of this conundrum is to follow the idea outlined in Remark 2.44 and to
de�ne the �eld dynamics algebraically, rather than in terms of unitaries. The �rst step
is to de�ne a C*-algebra A in terms of the �elds Φ(f) from Eq. (3.3).

De�nition 3.5. With H = F+

(
L2(R2)

)
we de�ne A ⊂ B(H) as the smallest C*-algebra17

containing all unitaries exp(iΦ(f)) for arbitrary f ∈ D(R2,R); i.e. smooth real-valued
functions with compact support.

Proposition 3.6. There is a unique one parameter group αt of automorphisms αt : A →
A satisfying

αt
(

exp
(
iΦ(f)

))
= exp(itHg) exp

(
iΦ(f)

)
exp(−itHg),

where g(x) = 1 holds on a su�ciently large interval.

Proof. [GJ70a, Sec. 4].

This automorphism group describes the time evolution of the interacting �elds alge-
braically. In a similar way we can proceed with the vacuum.

De�nition 3.7. For any A ∈ A, we de�ne the expectation values

ωg(A) = 〈Ωg, AΩg〉.

Theorem 3.8. The following statements hold.

(a) ωg is a state of A.

17We are glancing over some technicalities here, because the original construction in [GJ70b] is a bit
more involved. However, the simpli�cation we are applying here shouldn't cause big di�erences.
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(b) There is a sequence (gn)n∈N of cut-o�s such that g → ∞ and there is a state ω
such that limn→∞ ωgn(A) = ω(A) for all A ∈ A.

Proof. [GJ70b, Theorem 2.1].

Having this ω the idea is to get back a �eld which now should be a Wightman �eld. The
idea is to use the GNS representation of the state ω just constructed. Hence we have a
Hilbert space Hω, a *-morphism πω : A → B(Hω), and a cyclic vector Ωω ∈ Hω such
that ω(A) = 〈Ωω, πΩ(A)Ωω〉.

Theorem 3.9. There is a positive self-adjoint operator Hω on Hω such that

exp(itHω)πω(A) exp(−itHω) = π
(
αt(A)

)
and HωΩω = 0 (3.5)

Proof. [GJ70b, Theorem 2.1].

Remark 3.10. (a) The �rst statement in (3.5) says that the automorphism group αt
is unitarily implemented in the representation πω, and the corresponding unitary
group is generated by the operator Hω which is the renormalized Hamiltonian of the
interacting theory. It is the limit of Hg in the sense that

〈πw(B)Ωw, e
iHwtπw(A)Ω〉

is obtained through a limit as g → 1 of

〈BΩg, e
iHgtAΩg〉.

(b) The GNS vacuum Ωω is, again by Eq. (3.5) an eigenvalue of H with eigenvalue 0.
Since H is positive, Ωω is eigenvector with the lowest energy.

(c) We call Ωω the physical vacuum and πω the physical representation. The vectors in
Hω are called physical vectors.

Now let us come to the �nal step, which is the reconstruction of the �elds in the new
representation. This is done in terms of the following lemma.

Lemma 3.11. Consider f ∈ S (R2,R). The one parameter unitary group

R 3 λ 7→ Vλ = πω
(
exp
(
iλΦ(f)

))
∈ U(Hω)

is strongly continuous.

Proof. This is a consequence of the �locally Fock� property proved in [GJ70b, Thm 2.2];
cf. also the corresponding remarks in Sec. 1 of [GJ70b].

Now we can introduce the renormalized �elds as

Φren(f)ψ =
1

i

d

dλ
Vλψ

∣∣∣
λ=0

,
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with the unitaries Vλ from the preceding lemma. The set of ψ ∈ Hω for which the limit
exists forms the domain of Φren(f). Now all properties of the �eld Φ(f) constructed in
Sec. 3.2 can be carried over. To see this we again have to use the locally Fock property
of πω from [GJ70b, Thm 2.2]. This basically �nishes the construction. Let us summarize
the result.

Theorem 3.12. The �elds Φren(f) admit an invariant dense domain D ⊂ Hω, and a

strongly continuous repesentation P↑+ 3 (b,Λ) 7→ U(b,Λ) ∈ U(Hω) such that the time
translations coincide with exp(itHω). The �ve-tuple (Hw, D,Φω,Ωω, U) is a Wightman
quantum �eld.

Proof. This is not explicitly shown in [GJ70b] but implicitly discussed [GJ70b, Sec. 1].
Basically, all properties can either be carried over from the �elds Φ(f) by using [GJ70b,
Thm 2.2], or they are consequences of related properties of the GNS representation. The
only missing point is the representation U . The space translations are treated in [GJ70b]
along the same lines as the time evolution exp(itHω). The whole Poincaré group is treated
in [CJ70]. Together with the positivity of Hω (which generates the time translations) this
also shows that the spectrum condition holds.

Remark 3.13. We again can use Haag's theorem to analyze this construction. Since
the Wightman �eld we got is not the free �eld, by Theorem 3.3 said �eld has to be
unitarily inequivalent to the free �eld for all times. Hence, the renormalization process
just outlined, resulted in a change of representations of the CCR. The original one was
the vacuum representation of the free �eld, which does not contain a Hamiltonian for the
interacting model. The new representation is the vacuum representation of the interacting
�eld and it does not contain the free Hamiltonian. A similar statement holds for the
vacuum. The renormalized vacuum Ωω can not be described in terms of density operators
in the vacuum representation of the free �eld. Roughly speaking, this is caused by the
fact that we can say that this new vacuum contains in�nitely many particles of the free
theory, and therefore it is not de�ned in our original Fock space (which only contains
states with �nitely many particles).
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4 Scattering Theory

Our goal is to present Haag-Ruelle scattering, which associates an S-matrix to �elds.
But in order to do so we need some preparations. Since I do not want to assume prior
knowledge on this topic, we will start with some notes on classical particle scattering.
This should motivate some of the constructions we will do in the following and simpli�es
the insight into the physical means. For this chapter we will orient ourselves towards
[RS79].

4.1 Classical Particle Scattering

Phase space is given by

Σ = Rq × Rp Σ0 = {(q, p) ∈ Σ | p 6= 0}

and the free dynamics by

F
(0)
t : Σ→ Σ0 (q, p) 7→

(
q + t

p

m
, p
)

where m is the mass of the particle. Now for the interacting dynamics K : R3 → R3

(�force�) we assume boundedness and some kind of Lipschitz-continuity where the con-
stant DR depends on the radius of the considered disk.

‖K(q)‖ ≤ C ∀q ∈ R3

‖K(q1)−K(q2)‖ ≤ DR‖q1 − q2‖ ∀q1, q2 ∈ R3 : ‖q1 − q2‖ ≤ 1, ‖q1/2‖ < R
(4.1)

Now this implies that there exists a unique global solution of

q̇(t) =
p(t)

m
, ṗ(t) = K(q(t)) t ∈ R

q(0) = q, p(0) = p (q, p) ∈ Σ.
(4.2)

Hence there exists a global �ow

F : R× Σ→ Σ

(t, q, p) 7→ (q(t), p(t)).

The question now is if we can solve (4.2) with initial conditions �at in�nity�, i.e. by
specifying asymptotic behaviour for t→ ±∞. For that we need further conditions on the
force K.

∃C > 0 ∃α > 2 ∀q ∈ R3 ‖K(q)‖ ≤ C‖q‖α

∃D > 0 ∃β > 2 ∀r > 0 ∀‖q1/2‖ ≥ r ‖K(q1)−K(q2)‖ < Dr−β‖q1 − q2‖
(4.3)

Theorem 4.1. Let K satisfy (4.1) and (4.3) and let (q−∞, p−∞) ∈ Σ0 be given. Then
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there exists a unique solution R 3 t 7→ (q−(t), p−(t)) ∈ Σ of (4.2) such that

lim
t→−∞

‖p−(t)− p−∞‖ = 0

lim
t→−∞

∥∥∥q−(t)− q−∞ −
p−∞
m

t
∥∥∥ = 0

Similarly we get a solution R 3 t 7→ (q+(t), p+(t)) ∈ Σ if we replace −∞ by +∞.

Proof. [RS79, Theorem XI.1]

Figure 6: p−∞ is the initial mo-
mentum we start with
at in�nity. Similarly,
q−∞ is the position
of the free particle at
time t = 0 which
moves with momentum
p−∞. Replace −∞ with
+∞ to get the solution
t 7→ (q+(t), p+(t)) with
asymptotics at t →
+∞.

De�nition 4.2. Let t 7→ (q±(t), p±(t)) be the solution from Theorem 4.1 which is asymp-
totic to t 7→ q±∞ + p±∞

m t at t = ±∞. We de�ne the Möller operators (wave operators)
Ω± via

Ω± : Σ0 → Σ (q∓∞, p∓∞) 7→ (q∓(0), p∓(0)).

Ω+ maps the t = 0 initial data of the = −∞ asymptotic free dynamics to the t = 0
initial data of the interacting dynamics.

Proposition 4.3. Let K satisfy (4.1) and (4.3). Then

Ω±(q, p) = lim
t→∓∞

F−tF
(0)
t (q, p)

uniformly on compact subsets of Σ0.

Proof. [RS79, Theorem XI.2.(a)]

The Ω± obviously are injective due to existence and uniqueness of the solutions, but
not necessarily surjective.

De�nition 4.4. We de�ne Σin = Ran Ω+, Σout = Ran Ω− and

Σbound = {(q(t), p(t)) | ‖q(t)‖+ ‖p(t)‖ <∞}
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where R 3 t 7→ (q(t), p(t)) ∈ Σ is the solution of (4.2) with (q, p) ∈ Σ as initial data at
t = 0.

De�nition 4.5. We have weak asymptotic completeness if Σin = Σout and asymptotic
completeness if Σin = Σout = Σ\Σbound.

Note that all equalities hold up to measure zero sets.

Theorem 4.6. Let K(q) = − gradV (q) with V (q)→ 0 if ‖q‖ → ∞. If K satis�es (4.1)
and (4.3) then we have asymptotic completeness.

Proof. [RS79, Theorem XI.3]

Now that we introduced the concept of asymptotic completeness we can de�ne the
S-matrix.

De�nition 4.7. Let Σ(±) := (Ω±)−1(Σ\Σbound). The S-matrix is the map

S : Σ(+) → Σ(−) w 7→ (Ω−)−1(Ω+w).

Note that we basically have to remove a measure zero set from Σ, i.e. Σ′ = Σ\measure
zero set, and Σ(±) = (Ω±)−1(Σ′).
As a special case we now consider a spherically symmetric potential V (q) = V (‖q‖).

Proposition 4.8. Let K(q) = − gradV (q) where V (q) = V (‖q‖). Then the following
statements hold.

(1) SF
(0)
t = F

(0)
t S

(2) SR = RS for all R ∈ SO(3) where R(q, p) = (Rq,Rp)

(3) (Energy conservation) E0(S(q, p)) = E0(q, p) = 1
2m‖p‖

2

(4) (Angular momentum conservation) L(S(q, p)) = L(q, p) = p
m × q

Proof. [RS79, Section XI.2]

We use Proposition 4.8 to reduce the S-matrix to a pair of real valued functions of two
real variables.

Step 1: The vectors p, q span a 2-plane. By (2) we can choose this to be the e2, e3-plane.
We still can rotate around e1 hence we choose p = ‖p‖e3.

Step 2: S(q, p) = (q′, p′); now property (1) implies

S
(
q +

t

m
p, p
)

=
(
q′ + t

p′

m
, p′
)
.

Hence we can choose q = be2. S is determined by its values on (be2, ‖p‖e3) for
b, ‖p‖ ∈ R. The quantity b is called impact parameter.

Step 3: By (3) we get p′ = ‖p‖e(b, ‖p‖) with some unit vector e(b, ‖p‖).
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Step 4: By (4) the vectors (p′, q′) are in the e2, e3-plane and the component of p′ which
is perpendicular to e(b, ‖p‖) is determined by L.

Thus, S(q, p) is determined for all (q, p) by the two functions

θ(b, ‖p‖) = arccos(e(b, ‖p‖) · e3) (Scattering angle)

T (b, ‖p‖) =
q′ · e(b, ‖p‖)m

‖p‖
(Time delay)

with independant parameters b, ‖p‖. The time delay measures the time the particle spent
in the potential (compared to the free particle).

Figure 7: Schematic picture of
central scattering. Here
b is the impact parame-
ter and θ is the scatter-
ing angle.

Remark 4.9 (Cross section). Look at S and write S(q, p) = (f(q, p), g(q, p)) where we
ignore f (e.g. ignore the time delay). Again we assume p = ‖p‖e3. By Proposition 4.8 (1)
we get

g(q, ‖p‖e3) = g(q + αe3, ‖p‖e3)

for all α ∈ R. Hence it is su�cient to look at q ∈ R3 with q · e3. Energy conservation
implies ‖g(q, ‖p‖e3)‖ = ‖p‖ hence ĝ = g

‖p‖ takes values in S
2. With �xed ‖p‖ we get

e⊥3 3 q 7→ ĝ(q, ‖p‖e3) ∈ S2.

The Lebesgue measure λ on e⊥3 induces an image measure on S2 by

σ(E) = λ(ĝ−1(E))

where E ⊂ S2 Borel. If σ is absolutely continuous with respect to the invariant normalized
measure Ω on S2 we get a density

dσ =
dσ

dΩ
dΩ

where dσ
dΩ is the di�erential cross section.
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Figure 8: A uniform beam ap-
proaches in e3-direction
where the particles are
scattered in angle el-
ements dΩ. Thus the
di�erential cross-section
can be measured in
experiments.

The discussion just presented can not be applied to the Coulomb potential, since
the time delay becomes in�nite. This can be mitigated by a di�erent choice of the free
dynamics (�Dollard modi�ers�).

4.2 Quantum Scattering

Before diving into this section we repeat some basic concepts such as the spectrum of an
operator (Remark 4.10) and types of operator convergence (Remark 4.11).

Remark 4.10 (Spectrum). Let H be an (unbounded) self-adjoint operator on some
Hilbert space H.
• λ ∈ C is in the resolvent set ρ(H) if λ1 − H is a bijection from D(H) to H with
bounded inverse.

• σ(H) = C\ρ(H) is called the spectrum of H. For self-adjoint H we know that σ(H) ⊂
R.

• For f ∈ C0(σ(A)) vanishing at in�nity (if A is unbounded) we de�ne a bounded
operator f(A) ∈ B(H) as follows. For Ψ ∈ H there is a unique measure µΨ (spectral
measure) on σ(A) such that

〈Ψ, f(A)Ψ〉 =

∫
σ(A)

f(λ)µΨ(dλ).

• H decomposes as

H = Hpp ⊕Hac ⊕Hsg

where

Hpp = {Ψ |µΨ is pure point}
Hac = {Ψ |µΨ is absolutely continuous w.r.t. the Lebesgue measure}
Hsg = {Ψ |µΨ is singularly continuous}.
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• For some N ∈ N ∪ {∞} we have

H|D(H)∩Hpp
=

N∑
j=1

λj |φj〉〈φj |.

If N =∞ then this sum converges strongly. Elements of Hpp are bound states or linear
combinations thereof.

• Let Ψ ∈ Hac. Then

〈Ψ, HΨ〉 =

∫
σ(A)

λ
dµΨ

dλ
dλ

where dµΨ
dλ is the spectral density and dλ is the Lebesgue measure. E.g. for the position

operator we get

〈Ψ, QΨ〉 =

∫
R

Ψ(x)xΨ(x) dx =

∫
R

|Ψ(x)|2x dx.

Elements of Hac are unbound or scattering states. Up to a certain degree, scattering
theory is about the analysis of Hac.

• With this we can de�ne

σpp(H) = {λ |λ is eigenvalue of H}
σac(H) = σ(H|Hac)

σsg(H) = σ(H|Hsg).

Note that we want to avoid the singularly continuous spectrum as it is not clear what
it represents physically.

Remark 4.11 (Operator convergence).

(1) (Norm convergence). We say that

‖ · ‖ -lim
N→∞

UN = U

if ‖Un − U‖
N→∞→ 0. The good news is that if Un unitary, then its norm limit U

is unitary as well. The bad news however is that this type of convergence is too
strong for quantum dynamics for the following reason. Let H be some unbounded
self-adjoint opreator (e.g. the Hamiltonian of the harmonical oscillator) and (tn)n∈N,
tn ∈ R, limn→∞ tn = t. Then

‖ · ‖ -lim
N→∞

exp(itnH)︸ ︷︷ ︸
=:Vn

6= exp(itH) =: V. (4.4)
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Furthermore for some complete orthonormal system (φn)n∈N in H we have

‖ · ‖ -lim
N→∞

N∑
n=1

|φn〉〈φn| 6= 1. (4.5)

(2) (Weak convergence). This basically is the convergence of matrix elements as

w-lim
n→∞

Un = U

means limn→∞〈φ,Unψ〉 = 〈φ,Uψ〉 for all φ, ψ ∈ H. Now the good news is that
(4.4) holds in the weak limit which is good for quantum dynamics and further, (4.5)
converges weakly as well. However, w-lim

n→∞
Un for a sequence of unitary operators

(Un)n can now be any operator U with ‖U‖ ≤ 1 18 so the weak topology is too weak
for our purposes (cf. Remark 4.12).

(3) (Strong convergence). The strong limit

s-lim
n→∞

Un = U

is de�ned to be limn→∞ ‖Unφ − Uφ‖ = 0 for all φ ∈ H. Good news is that (4.4)
and (4.5) converge strongly. At �rst it seems bad that s-lim

n→∞
Un = U for unitaries

Un only implies that U is an isometry19. The lack of unitarity of U is a consequence
of the lack of strong continuity of the map A 7→ A∗. However, we will see that lack
of unitarity of the strong limit is exactly what we need in scattering theory. Hence
strong topology is the correct choice for us.

Remark 4.12. Note that weak and strong topology induce the same topology on the

18As an example of this, consider H = `2(N), Ha,b = span{ea, . . . , eb} ⊂ H and de�ne Unej = ej+N
for j = 1, . . . , N and UNek = ek−N for k = N + 1, . . . , 2N . Hence UNH1,N = HN+1,2N and vice
versa. Otherwise UN resembles the identity UNel = el for all l ∈ {2N + 1, . . .}. Hence φ ∈ H can be
decomposed into φ = φN ⊕ φ2N ⊕ φR ∈ H1,N ⊕HN+1,2N ⊕H2N+1,∞ which yields

|〈φ,UNΨ〉| = |〈φN , UNΨ2N 〉|+ |〈φ2N , UNΨN 〉|+ |〈φR,ΨR〉|
≤ ‖φ‖‖UNΨ2N‖+ ‖Ψ‖‖U∗Nφ2N‖+ ‖φR‖‖ΨR‖

as is readily veri�ed. As φ,Ψ ∈ `2 they are square summable so for any ε > 0 there exists Nε ∈ N
such that ‖Ψ2N‖+ ‖ΨR‖ < ε and ‖φ2N‖+ ‖φR‖ < ε for all N ≥ Nε. Hence w-lim

N→∞
Un = 0.

19This follows from

〈φ,U∗Uφ〉 = 〈Uφ,Uφ〉 = ‖Uφ‖2 = lim
N→∞

‖Unφ‖2 = ‖φ‖2.

About UU∗ we can only say that it is a projection since

U U∗U︸ ︷︷ ︸
=1

U∗ = UU∗ (UU∗)∗ = U∗∗U∗ = UU∗.

The operator U maps H entirely to the subspace UU∗H.

60



4 Scattering Theory

unitary group U(H), i.e. for (UN )N∈N, U unitary we have

s-lim
N→∞

UN = U ⇔ w-lim
N→∞

UN = U

but they do not coincide on the unit ball and U(H) is neither strongly nor weakly closed
in B(H).

De�nition 4.13. Let H,H0 be self-adjoint operators on H. The generalized wave oper-
ators Ω±(H,H0) exist if the strong limits

Ω±(H,H0) = s-lim
t→∓∞

eitHe−itH0Pac(H0)

exist20. If Ω±(H,H0) exist we de�ne

Hin = Ran Ω+(H,H0) Hout = Ran Ω−(H,H0).

This �ts the formula from the classical case in Proposition 4.3.

Remark 4.14. (a) Here, H0 is the �free� and H the �interacting� Hamiltonian where a
typical choice is H0 = − ∆

2m . Hence in many (or even most) physically relevant cases
H0 only has absolutely continuous spectrum such that we have Pac(H0) = 1 and

Ω±(H,H0) = s-lim
t→∓∞

eitHe−itH0 ,

but this is by no means a requirement.

(b) If Pac(H0) = 1 it can be shown that existence of ‖ · ‖-lim eitHe−itH0 implies H = H0

(cf. [RS79, Section XI, Problem 15]). Hence the norm topology is too strong as
already stated before.

(c) (Partial isometries). An operator U ∈ B(H) is a partial isometry if U : [EH]→ [FH]
is unitary where U∗U =: E is the initial and UU∗ =: F is the target projection.

Proposition 4.15. Let Ω±(H,H0) exist. Then the following statements hold.

(1) Ω±(H,H0) are partial isometries with Pac(H0) as initial and H in
out

as target subspace.

(2) H in
out

are invariant subspaces for H and

Ω±(D(H0)) ⊂ D(H) HΩ±(H,H0) = Ω±(H,H0)H0.

(3) H in
out
⊂ RanPac(H).

Proof. [RS79, Section XI.3, Proposition 1]

20Here Pac(H0) denotes the projection onto the absolutely continuous spectrum of H0.
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Remark 4.16. (1) If Pac(H0) = 1 then the operators Ω± are isometries, i.e.(
Ω±(H,H0)

)∗
Ω±(H,H0) = Pac(H0) = 1.

(2) From Proposition 4.15 (2), if Pac(H0) = 1 we get

(Ω±)∗HΩ± = H0.

Hence restricting H to (parts of) its continuous spectrum leads to an operator which
is unitarily equivalent to H0.

(3) Obviously H in
out
⊂ Ran(Pac(H)) has to hold as Ppp(H) are the bound states and

Psg(H) we want to avoid.

(4) Ω± maps the �free� states to the scattering states of H.

De�nition 4.17. Assume that Ω±(H,H0) exists. They are called complete i�

Ran Ω+ = Ran Ω− = RanPac(H).

If Psg(H) = 0 we get Ran Ω+ = Ran Ω− = RanP⊥pp which is the equivalent of the con-
dition in De�nition 4.7 so we could again call this asymptotic completeness. In De�nition
4.17 however, we haven't made any assumptions about the singular spectrum of H hence
the condition there is only called completeness.

De�nition 4.18. Assume that Ω±(H,H0) exist and are complete. Then the S-matrix or
scattering operator is de�ned to be

S = (Ω−)∗Ω+.

The following Proposition is the quantum analogon of Proposition 4.8.

Proposition 4.19. The following statements hold.

(1) SeitH0 = eitH0S for all t ∈ R. The domain D(H0) is left invariant by S. Further if
Ψ ∈ D(H0) then H0(SΨ) = S(H0Ψ).

(2) If U ∈ U(H) commutes with H,H0 (i.e. [U, eitH ] = 0 etc.) then [U, S] = 0.

(3) S is unitary if and only if Ran Ω+ = Ran Ω− (weak asymptotic completeness).

Proof. [RS79, Proposition in Section XI.4, p.74]

Remark 4.20. (a) There are two main tasks a mathematical physicist has to perform.
One is to prove existence and completeness and two is determining S. For one there
are lots of tools available. We do not have the time to go into details of [RS79]. For
two there are two major strategies: (a) eigenfunction expansions and (b) pertubation
theory. The former is treated a little bit in the next section. The latter is the most
important tool in large parts of quantum �eld theory (in particular in QED). We will
discuss it in detail in the next chapter.
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(b) In some cases H0 and H are not de�ned on the same Hilbert space (due to Haags
theorem this happens in particular in Haag-Ruelle; cf. Sect. 4.4). This requires a
special treatment known as two Hilbert space technique.

De�nition 4.21. Let H,H0 self-adjoint operators on Hilbert spaces H,H0 and J ∈
B(H0,H) be given. Ω±(H,H0; J) exist i� the strong limits

Ω±(H,H0; J) = s-lim
t→∓∞

eitHJe−itH0Pac(H0)

exist.

Depending on J , the operators Ω±(H,H0; J) in general are no (partial) isometries.
However, the following result holds.

Proposition 4.22. H′in := (Ker Ω+)⊥ is an invariant subspace for H0 and Hin :=
Ran Ω+ is an invariant subspace for H. Furthermore, H0|H′

in
is unitarily equivalent to

H|Hin
. In particular H|Hin

is purely absolutely continuous.

Proof. [RS79, Section XI.3, Proposition 4]

De�nition 4.23. We say that Ω± is semicomplete if (Ker Ω±)⊥ = RanPac(H0). If
additionally Ran Ω± = RanPac(H) then Ω± is said to be complete.

The whole construction up to a certain degree depends on the choice of J . There
are criteria which guarantee that Ω(H,H0; J1) = Ω(H,H0; J2), cf. [RS79, Section XI.3].
Physical input obviously is needed, too.

4.3 Quantum Two-Body Scattering

This is a short excursion, since the subject is not immediatly relevant to quantum �eld
theory scattering. But it helps to relate the material to �ordinary� and �known� quantum
mechanics. Let

H = L2(R3)⊗ L2(R3) = L2(R6).

The free Hamiltonian is given by

H̃0 = − 1

2µ1
∆1 −

1

2µ2
∆2

where r ∈ R6 is written r = (r1, r2) with ri ∈ R3 and ∆i is the three-dimensional
Laplacian associated to ri. The interacting Hamiltonian is

H̃ = H̃0 + V (r1 − r2)

where V is a function in L2(R3)+L∞(R3). Thus Kato's theorem ([RS75, Theorem X.16])
shows that H̃ is self-adjoint on C∞0 (R6). We shall later place more severe restrictions on V .
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First, we change coordinates to separate the center of mass motion. The new coordinates
will be

R =
µ1r1 + µ2r2

µ1 + µ2
r12 = r1 − r2.

Let U be the unitary operator on L2(R6) given by

(Uf)(x, y) = f
(µ1x+ µ2y

µ1 + µ2
, x− y

)
and let r1, r2 denote the obvious coordinate multiplication operators. Denote Ur1U

−1 by
R and Ur2U

−1 by r12. Then

UH̃U−1 = − 1

2(µ1 + µ2)
∆R −

1

2m
∆r12 + V (r12)

UH̃0U
−1 = − 1

2(µ1 + µ2)
∆R −

1

2m
∆r12

where m = µ1µ2

µ1+µ2
. We now write L2(R6) = L2(R3)⊗L2(R3) where the variables are R and

r12. Then, as operators on D̃ = C∞0 (R3) ⊗ C∞0 (R3) ⊂ C∞0 (R6), UH̃0U
−1 and UH̃U−1

can be decomposed as

UH̃0U
−1 = h0 ⊗ 1+ 1⊗H0

UH̃U−1 = h0 ⊗ 1+ 1⊗H

where

h0 = − 1

2(µ1 + µ2)
∆ H0 = − 1

2m
∆ H = − 1

2m
∆ + V (r).

Thus, e−itUH̃0U−1
= e−ith0 ⊗ e−itH0 and e−itUH̃U

−1
= e−ith0 ⊗ e−itH . As these di�er only

in the second factor, we shall de�ne wave operators Ω± and a scattering operator S for
the system {e−itH , e−itH0} on L2(R3). The wave and scattering operators for the original
system are then given by U−1(1⊗ Ω±)U and U−1(1⊗ S)U respectively.
The task now consists of �rst checking existence and completeness of the wave operators

and second constructing the S-matrix.

Theorem 4.24 (Cook-Hack-Theorem). Let V = V2+Vr ∈ L2(R3)+Lr(R3) for 2 ≤ r < 3.
Let H0 = −∆ on L2(R3) and H = H0 + V . Then Ω±(H,H0) exist.

Proof. [RS79, Theorem XI.24]

Again the Coulomb potential is not covered. We have (1 + ‖v‖)−β ∈ L2(R3) + Lr(R3)
only if β > 1. As in the classical case we have to modify the free dynamics in order to
handle an in�nite time delay.
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Theorem 4.25. Let H0 = −∆ on L2(R3) and let V (x) = V (‖x‖). Suppose that∫ ∞
1
|V (r)| dr +

∫ 1

0
r|V (r)| dr <∞.

Then Ω±(H,H0) exist and are complete.

Proof. [RS79, Theorem XI.31]

Note that Coulomb again is not covered.

Remark 4.26 (Eigenfunction expansion, discrete spectrum). An operatorA on L2(R3, dx)
with purely discrete spectrum has an eigenfunction expansion in the direct sense that
there are L2-functions ϕn(x) with an associated map˜: L2(R3, dx)→ `2 by

(f̃)n =

∫
ϕn(x)f(x) dx.

That the ϕn are eigenfunctions with Aϕn = anϕn can be expressed by

(Ãf)n = anf̃n if f ∈ D(A).

The orthonormality of the {ϕn} implies Ran˜= `2. The completeness of the ϕn is ex-
pressed by

f(x) = L2- lim
∞∑
n=0

f̃nϕn(x).

Finally, as a consequence of completeness and orthonormality we have ‖f‖2 =
∑

n |f̃n|2.

Remark 4.27 (Eigenfunction expansion, Laplacian). We shall show how the Fourier
transform provides an eigenfunction expansion for H0 = −∆ which has only continuous
spectrum. Write ϕ0(x, k) = eik·x and think of ϕ0(·, k) as a family of functions of x
parametrized by a continuous index k. Then, we know that ˆ satis�es

f̂(k) =
1

(2π)n/2
l.i.m.

∫
ϕ0(x, k)f(x) dx

where l.i.m.
∫

= L2- lim
∫
|x|<M as M → ∞. The ϕ0(·, k) are eigenfunctions with eigen-

value k2 in the sense that

(Ĥ0f)(k) = k2f̂(k) if f ∈ D(H0). (4.6)

The orthogonality and �normalization� of the ϕ0(·, k) imply Ranˆ = L2(R3, dx). The
completeness of the set {ϕ0(·, k)}k∈Rn is expressed by

f(x) = l.i.m.
1

(2π)3/2

∫
ϕ0(x, k)f̂(k) dx
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and ‖f‖2 =
∫
|f̂(k)|2 dk.

Remark 4.28 (Lippmann-Schwinger equation). How can we �nd candidates ϕ for the
�continuum eigenfunctions� needed for an eigenfunction expansion of H = H0 + V ?
Remember that Ω+f has been de�ned only for f ∈ L2, but suppose that we could make
sense out of Ω+ϕ0(·, k). Then since Ω+H0 = HΩ+, ϕ(·, k) = Ω+ϕ0(·, k) should obey
Hϕ = k2ϕ in the sense of (4.6). If ϕ = Ω+ϕ0 in some sense, then ϕ0 = (Ω+)∗ϕ should
be in the limit as t→ −∞ of

e+iH0te−iHtϕ = ϕ− i
∫ t

0
eiH0sV e−iHsϕds

→ ϕ− lim
ε↓0

i

∫ −∞
0

eiH0sV e−ik
2se+εsϕds

= ϕ+ lim
ε↓0

(H0 − k2 − iε)−1V ϕ.

Thus ϕ should obey

ϕ(·, k) = ϕ0(·, k)− lim
ε↓0

([H0 − (k2 + iε)]−1V ϕ)(·, k)

or, using the free resolvent

ϕ(x, k) = eik·x − 1

4π

∫
eik|x−y|

|x− y|
V (y)ϕ(y, k) dy.

hence by solving the Lippmann-Schwinger equation we get �eigenfunctions� ϕ(·, k) with
Ω+ϕ0(·, k) = ϕ(·, k). This directly gives us the Möller operators, and therefore the S-
matrix. To make this formal reasoning exact look at [RS79, Theorem XI.41].

4.4 Haag-Ruelle Scattering Theory

The task is to associate an S-matrix to a Wightman quantum �eld. The �rst problem
arising is the question what the free dynamics is. A possible solution to this, if the
Hamiltonian of the interacting model has the form H = H0 + λHI (e.g. ϕ4-model), is
that we could use H0. But we have seen that the free �eld for di�erent masses leads to
unitarily inequivalent models (cf. Section 3.4). It turns out that the mass m0 belonging
to H0 is not the correct mass21.
Assume that (H, D,A,Ψ0, U) is a Wightman quantum �eld. To read o� the correct

mass from A we add the following axiom.

De�nition 4.29 (Φ has an upper and lower mass gap). Let Pµ be the generators of the
translation subgroup U(a, I) of the Poincaré representation U(a,Λ). For some m > 0 and

21The problem here is that bare mass is not the same as physical mass as a relativistic particle never
escapes its own interaction.
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some ε > 0, the spectrum of Pµ is contained in

{0} ∪Hm ∪ V m+ε,+ = {0} ∪ {p | p2 = m2; p0 > 0} ∪ {p | p2 ≥ (m+ ε)2; p0 > 0}

where p2 = p2
0 − p2

1 − p2
2 − p3

3. Moreover, the set of vectors S which are eigenvectors for
p2 with eigenvalue m2 is non-empty, and there is a cyclic vector for the action of U(a, I)
on S.

Figure 9: Illustration of the
condition in De�nition
4.29.

Remark 4.30. S is the family of vectors describing the states of a single spinless particle
of mass m. De�nition 4.29 ensures that the eigenvalue m2 is an isolated eigenvalue of P 2.
Basically the idea is to create these one particle states by acting with a creation operator
on the vacuum. To guarantee that this strategy works we need another property.

De�nition 4.31 (Coupling of the vacuum to the one particle states). The spectral weight
dρ for the Källen-Lehmann representation (see Theorem 2.26) has the form

dρ(s) = δ(s−m) + dρ̃(s)

where dρ̃ has support in [m+ ε,∞).

Remark 4.32. In the following we assume that A satis�es the conditions in De�ni-
tions 4.29 and 4.31. The basic idea to exploit these conditions is to use the mass from
Def. 4.29 and consider the free �eld Φm of mass m. Now we want to de�ne a map
J : F+(L2(Hm))→ H via

J

[
n∏
i=1

(Φm(g(i)))Ω0

]
=

[
n∏
i=1

A(g(i))

]
Ψ0 (4.7)

with22 appropriate test functions g(i). Unfortunately this does not lead to a well-de�ned
quantity. Hence we need a little bit more preparation.

De�nition 4.33. A solution f of the Klein-Gordon equation (2.4) is called regular wave
packet if the Fourier transform of the initial data f(0, ·), ∂tf(0, ·) are in C∞0 .

22Here, Φm is the free �eld with vacuum Ω0 and A is the interacting �eld with vacuum Ψ0.
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Remark 4.34. From the analysis of Section 2.2 we see that φ = φ+ + φ− with

φ±(x, t) =
1

(
√

2π)d−1

∫
e±iω(k)teik·xu±(k) dd−1k

with u±(k) = 1
2(f̂±(0, ·)∓ ω(k)−1 ̂∂tf±(0, ·)). Hence u± ∈ C∞0 .

De�nition 4.35. For two objects g, k (smooth functions or �elds) we de�ne the expres-
sion (

g
↔
∂0k
)

(t) =

∫ [
g(x, t)

∂

∂t
k(x, t)− k(x, t)

∂

∂t
g(x, t)

]
d3x.

Remark 4.36. (a) Consider the free scalar �eld Φm of mass m > 0 and a regular wave
packet f . Now Φm(t, x) is given as a quadratic form∫

Φm(t, x)[ϕ,ψ]g(t, x) dt dx = 〈ϕ,Φm(g)ψ〉

for all ϕ,ψ ∈ DS so ϕ = ϕ(0)⊕ . . .⊕ϕ(n)⊕ 0⊕ . . . where ϕ(j) ∈ S (Rd · · ·Rd). Recall
that Φm and ∂tΦm can be smeared over space alone

Φm,t(g) =

∫
g(x)Φm(t, x) dx (∂0Φm,t)(g) =

∫
g(x)∂0Φm(t, x) dx

so Φm,t, ∂0Φm,t are operators (�time zero �elds�). Hence we can plug Φm into g
↔
∂0Φm.

The latter is independant of t since f and Φm are solutions to the Klein-Gordon
equation. If the Fourier transform of f in the spatial variables has the form

f̂(p, t) =
1

(2π)1/2
h(k)e−iω(k)(t) (4.8)

then we get a creation operator

f
↔
∂0Φm = i

∫
h(p)a∗(p) d3p. (4.9)

In particular, (4.9) shows that as n runs through N0 and fi runs through all choices
obeying (4.8), the vectors (

f1

↔
∂0Φm

)
· · ·
(
fn
↔
∂0Φm

)
Ω0 (4.10)

run through a total set of Hm = F+(L2(Hm)), the Hilbert space of the free �eld.
Thus for all ψ ∈ Hm there is at most one way to write ψ like so. Doing the opposite,
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i.e.

f̂(p, t) =
1√
ω

∫
h(p)eiω(p)t d3p

yields the annihilation operator

f
↔
∂0Φm = −i

∫
h(−p)a(p) d3(p).

Hence this is a somewhat awkward way to recreate the Hilbert space of the free �eld.

(b) Now we can come back to the idea in (4.7) in Remark 4.32. We need an expression
for the right-hand side of (4.7) similar to (4.10). Pick a function h in C∞0 (R) so
that h(y) = 1 near y = m2 and supph ⊂ (0,m2 + ε). De�ne a new operator-valued
distribution B(x, t) by B̂(p) = h(p2)Â(p) in momentum space, that is,

B(g) = A(Tg) (4.11)

for any test function g where

T̂ g(p) = h(p2)ĝ(p).

Now let f ∈ S (R3). Then f̂(p)e−ip0t0h(p2) is in S (R4), so we can pick g in (4.11)
to have the form f(x)δ(t − t0) with f ∈ S (R3). Hence ĝ(p0, p) = f̂(p)e−ip0t0 so
ĝ(p0, p)h(p2) = f̂(p)e−it0p0h(p) is in S (R4). Thus B(t, x) can be smeared with re-
spect to space alone as B(f, t) = A(T f ⊗ δt) is C∞ in t. Now B(·, t) is smooth in t
just as ∂tB(·, t). In particular, for any f ∈ C∞(R4) with f(·, t) and ∂0f(·, t) in S (R3)

for each t, we can look at (f
↔
∂0B)(t) for a regular wave packet. By De�nition 4.31〈(

f
↔
∂0B

)
Ψ0,

(
g
↔
∂0B

)
Ψ0

〉
=
〈(
f
↔
∂0B

)
Ω0,

(
g
↔
∂0B

)
Ω0

〉
(4.12)

for the left-hand side of (4.12) can be written in terms of the two-point function
for A. Since B has built into it a factor of h(p2), De�nition 4.31 says that only the
δ(s−m) term from the spectral weight survives. What is then left is the same thing
that would occur if A was equal to Φm. Since Φ̂m(p) = h(p2)Φ̂m(p), (4.12) holds. In
other words: B has the same two-point function as the free �eld. Hence the idea is
to compare

J

[
n∏
i=1

(
fi
↔
∂0Φm

)
Ω0

]
=

n∏
i=1

(
fi
↔
∂0B

)∣∣∣
t=0

Ψ0 (4.13)

where fi
↔
∂0B is the creation operator for one part of interacting theory. That this

works is the content of the following theorem which is the main result of the Haag-
Ruelle scattering theory.

69



4 Scattering Theory

Theorem 4.37. Let A be a hermitian scalar Wightman quantum �eld, satisfying De�-
nitions 4.29 and 4.31. Then the following statements hold.

(a) For any regular wave packets f1, . . . , fn, the limits

lim
t→∓∞

(
f1

↔
∂0B

)
· · ·
(
fn
↔
∂0B

)
(t)Ψ0 =: η in

out
(f1, . . . , fn)

exist in the norm topology on H and are independent of the choice of h.

(b) Let Hin and Hout denote the closed span23 of the ηin and ηout. Hin and Hout are left
invariant by the representation U of the Poincaré group.

(c) There exist operator-valued distributions ϕin on Hin and ϕout on Hout so that (Hin, Uϕin)
and (Hout, Uϕout) are unitarily equivalent to the free �elds of mass m and that

η in
out

(f1, . . . , fn) =
(
f1

↔
∂0ϕ in

out

)
· · ·
(
fn
↔
∂0ϕ in

out

)
Ψ0.

Proof. [RS79, Theorem XI.109]

Remark 4.38. Let f1, . . . , fn obey (4.8). Now we can unambiguously de�ne a map J
from a dense subset of Hm, the Hilbert space for the free �eld of mass m, to H by (4.13).
Note that J is well-de�ned because a given vector ψ ∈ Hm can be written in at most one
way as

ψ =
n∏
i=1

(
fi
↔
∂0Φm

)
Ω0

if the fi are required to satisfy (4.8). Let D0 be the set of vectors
∏n
i=1(fi

↔
∂0Φm)Ω0 which

is total in Hm by (4.9). Then the following result holds.

Corollary 4.39. The limits

Ω± = s-lim
t→∓∞

eitHJe−itH0

exist and de�ne partial isometries Ω+ : Hm → Hin and Ω− : Hm → Hout.

Proof. Let e−ith0f be de�ned via

(e−ith0f)(s, x) = f(s+ t, x).

Then

e−itH0

[
n∏
i=1

fi
↔
∂0Φm

]
Ω0 =

[
n∏
i=1

e−ith0fi
↔
∂0Φm

]
Ω0

23The closed linear span of some non-empty subset E ⊆ X of some normed vector space is the intersection
of all the closed linear subspaces of X which contain E.
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so

eitHJe−itH0

[
n∏
i=1

fi
↔
∂0Φm

]
Ω0 =

n∏
i=1

eitH
(
fi(·, t)

↔
∂0B(·, 0)

)
e−itHΨ0

=
n∏
i=1

(
fi
↔
∂0B

)
(t)Ψ0.

By Theorem 4.37, the limits de�ning Ω± exist and

Ω±

[
n∏
i=1

fi
↔
∂0Φm

]
Ω0 =

n∏
i=1

(
fi
↔
∂0ϕ in

out

)
Ψ0. (4.14)

By (c) of said theorem, Ω± are isometries.

Remark 4.40. Eq. (4.14) says that

Ω±Φm = ϕ in
out

Ω±.

In particular, the S-matrix S = Ω+(Ω−)∗ obeys

ϕout = S−1ϕinS

if we have the condition of asymptotic completeness

Hin = Hout = H.

Since φin, φout are free �elds, they obey a particle interpretation in terms of the particle
number operator. To understand this remark, note that as free �elds φin and φout are
accompanied by representations Uin and Uout of the Poincaré group, which are unitarily
equivalent to the second quantization Γ(Um) of the irreducible representation Um on
L2(Hm,Ωm) introduced in Prop. 2.3, the latter was identi�ed as the description of a free,
relativistic, elmentary particle of massm and spin 0. Since Hin and Hout can be identi�ed
via the map J with the bosonic Fock space over L2(Hm,Ωm), normalized vectors ψ ∈ Hin

or ψ ∈ Hout can be regarded as (the description of) states of a �nite number of mutually
non-interacting particles of this type. They are non-interacting because they are located
(at t = ±∞) at an in�nite distance and therefore they do not recognize each other.
This is possible, since the interaction mediated by massive particles is �short range�,
i.e. translated to the non-relativistic case: the interaction potential falls of faster than
distance−1. The S-matrix now describes how these free particles at t = −∞ evolve into
free particles at t = +∞. In between, i.e. at �nite times, the system interacts and a
consistent interpretation in terms of particles is usually not possible.
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5 Perturbative Theory à la Epstein-Glaser

5.1 Time-dependent Pertubation Theory in Quantum Mechanics

In this section we will have a short look at the time-dependent Schrödinger equation

dϕ(t)

dt
= −iH(t)ϕ(t)

and the corresponding scattering theory. For unbounded operators this equation is prob-
lematic, at least without further (and most likely very restrictive) statements about the
domains of H(t). Therefore we will assume that H(t) is self-adjoint and bounded.

De�nition 5.1. A two-parameter family of unitary operators U(s, t) for s, t ∈ R which
satis�es the following conditions is called a unitary propagator.

(a) U(r, s)U(s, t) = U(r, t)

(b) U(t, t) = 1

(c) U(s, t) is jointly strongly continuous in s and t.

Theorem 5.2 (The Dyson expansion). Let t 7→ H(t) be a strongly continuous map of R
into the bounded self-adjoint operators on a Hilbert space H. Then

U(t, s)ϕ = ϕ+

∞∑
n=1

(−i)n
∫ t

s

∫ t1

s
. . .

∫ tn−1

s
H(t1) . . . H(tn)ϕdtn . . . dt1

de�nes a unitary propagator on H such that for all Ψ ∈ H we have

ϕs(t) = U(t, s)Ψ

satis�es

d

dt
ϕs(t) = −iH(t)ϕs(t) ϕs(s) = Ψ. (5.1)

Proof. [RS75, Theorem X.69]

Remark 5.3. We can motivate this setup by rewriting (5.1) as an integral equation

ϕs(t) = ϕs(s)− i
∫ t

s
H(t1)ϕs(t1) dt1

and inserting this expression recursively into itself. Of course this procedure does not
prove anything.

Remark 5.4. We can extend the integrals to integrals over the whole interval [s, t]. Let's
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have a look at n = 2. ∫ t

s

∫ t1

s
H(t1)H(t2) dt2 dt1

Figure 10: The domain of integration is a triangle.
We obviously have ∆2 = {(t1, t2) | t2 ≥
t1} and ∆1 = {(t1, t2) | t2 ≤ t1}.

Consider the map

F : (t1, t2) 7→ (t2, t1) F (∆2) = ∆1

so an integral over ∆2 can be mapped to an integral over ∆1 by �ipping t1 and t2. Note
that as det(DF ) = 1, the transformation of the integral does not lead to an additional
factor. Fubini yields∫

∆2

H(t2)H(t1) dt2 dt1 =

∫
∆1

H(t1)H(t2) dt1 dt2 =

∫
∆1

H(t1)H(t2) dt2 dt1.

Now we introduce a �time-ordered product�

T{H(t1)H(t2)} =

{
H(t1)H(t2) (t1, t2) ∈ ∆1

H(t2)H(t1) (t1, t2) ∈ ∆2

.

We then get∫ t

s

∫ t1

s
H(t1)H(t2) dt2 dt1 =

∫
∆1

H(t1)H(t2) dt2 dt1 =

∫
∆1

T{H(t1)H(t2)} dt2 dt1

and∫ t

s

∫ t1

s
H(t1)H(t2) dt2 dt1 =

∫
∆2

H(t2)H(t1) dt2 dt1 =

∫
∆2

T{H(t1)H(t2)} dt2 dt1.

For general n we de�ne

T{H(t1) . . . H(tn)} = H(σ(t1)) . . . H(σ(tn))

where σ : {t1, . . . , tn} → {t1, . . . , tn} is a permutation with σ(t1) ≥ . . . ≥ σ(tn). With an
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induction argument we get∫ t

s

∫ t1

s
. . .

∫ tn−1

s
H(t1) . . . H(tn) dtn . . . dt1 =

1

n!

∫ t

s
. . .

∫ t

s
T{H(t1) . . . H(tn)} dtn . . . dt1.

Thus the Dyson series gets the more familiar form

U(t, s) = 1+
∞∑
n=1

(−i)n

n!

∫ t

s
. . .

∫ t

s
T{H(t1) . . . H(tn)} dtn . . . dt1

=: T exp

(
−i
∫ t

s
H(t1) dt1

)
.

Remark 5.5. By the proceeding remark we see that each term of the Dyson series is
bounded by

|t− s|k

n!

(
sup
r∈[s,t]

‖H(s)‖
)n
‖ϕ‖.

Hence the series converges in norm to a unitary U(s, t). Checking that U(t, s)Ψ solves
our original equation can now be done term by term. Checking further that U(t, s) is a
propagator is straightforward.

Remark 5.6. Although the Dyson expansion requires H(t) to be bounded, by passing
to the �interaction representation� we can use it to handle certain cases of the form

H(t) = H0 + V (t)

where H0 is a (possibly unbounded) self-adjoint operator and t 7→ V (t) satis�es the
hypotheses of Theorem 5.2. De�ne

Ṽ (t) = eitH0V (t)e−itH0 .

Then t 7→ Ṽ (t) also satis�es the hypotheses of Theorem 5.2 and we denote the corre-
sponding propagator by Ũ(t, s). If we now set

U(t, s) = e−itH0Ũ(t, s)eisH0 (5.2)

then, at least formally, U(t, s) satis�es

d

dt
U(t, s) = −iH0e

−itH0Ũ(t, s)eisH0 + e−isH0(−iṼ (t))Ũ(t, s)eisH0 (5.3)

= (−iH0 − iV (t))U(t, s)
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so ϕs(t) = U(t, s)ψ should be a strong solution of

d

dt
ϕs(t) = −i(H0 + V (t))ϕs(t) ϕs(s) = ψ.

The di�culty is that H0U(t, s)ψ = H0e
−itH0Ũ(t, s)eisH0ψ may not make sense since

Ũ(t, s)ψ may not be in the domain of H0 even if ψ is. However, for any ψ ∈ H, ψs(t) =
e−itH0Ũ(t, s)eisH0ψ is always a �weak� solution in the sense that for any η ∈ D(H0),
〈η, ψs(t)〉 is di�erentiable and

i
d

dt
〈η, ψs(t)〉 = 〈H0η, ψs(t)〉+ 〈V (t)η, ψ, s(t)〉.

For our purposes the formal reasoning in (5.3) is su�cient. For a more detailed discussion
of the validity of (5.3) and possible generalization we refer to [RS75, Section X.12].

De�nition 5.7. Let U(t, s) be the unitary propagator associated to H(t) = H0 + V (t)
according to Theorem 5.2. We say that the associated wave operators exist i� the strong
limits

Ω± = s-lim
t→∓∞

U(t, 0)∗e−itH0

exist.

Remark 5.8. We can form the S-matrix as

S = (Ω−)∗Ω+ =
(

s-lim
t→∞

U(t, 0)∗e−itH0

)∗(
s-lim
s→−∞

U(s, 0)∗e−isH0

)
.

If we ignore all warning signs and pretend that we can exchange adjoints with strong
limits24 and operator products25 we get

S = s-lim
t→∞
s→−∞

eitH0U(t, 0)U(s, 0)∗e−isH0

with U(s, 0)U(0, s) = U(s, s) = 1 and the other way round implies U(0, s) = U(s, 0)∗ so
we get

S = s-lim
t→∞
s→−∞

eitH0U(t, 0)U(0, s)e−isH0 = s-lim
t→∞
s→−∞

eitH0U(t, s)e−isH0 .

However according to Remark 5.6 the operator

Ũ(t, s) = eitH0U(t, s)e−isH0

24We can't as A→ A∗ is not strongly continuous.
25(A,B) 7→ AB is not jointly continuous in the strong operator topology.
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is the unitary propagator belonging to the family

t 7→ Ṽ (t) = eitH0V (t)e−itH0

which we can express as

S = s-lim
t→∞
s→−∞

Ũ(t, s) = �Ũ(−∞,−∞)�

= 1+
∞∑
n=1

(−i)n

n!

∫
Rn

T{Ṽ (t1) . . . Ṽ (tN )} dt1 . . . dtn.
(5.4)

This is the perturbation expansion of the S-matrix in quantum mechanics. Note that we
have done several �forbidden� things like exchanging adjoints and strong limits. Hence
we shouldn't be too surprised if the series does not converge, even in otherweise harmless
situations. This is, however, not necessarily a problem. Even if convergence is not given,
the �rst few (say two or three) terms of the expansion can for small potentials lead
to reliable approximations of S. Cross sections derived from such a procedure can be
reproduced with great accuracy in the laboratory26.

5.2 Time-ordered Products

Let's have a look at the Hamiltonian of the Φ4-model

H = H0 + g

∫
Rd−1

:Φm(0, x)4 : dd−1x (5.5)

where Φm(t, x) is the free scalar �eld of mass m > 0 and H0 is the corresponding
Hamiltonian. Note that m is the �bare� mass, and not necessarily the �physical� mass
identi�ed in Section 4.4 via spectral properties of spacetime translations of the interacting
�elds. In fact the great advantage of this perturbative approach (or its biggest problem
� this depends on your personal preferences) is that we do not need (and in most cases
do not have) the fully interacting theory. The term

HI =

∫
Rd−1

:Φm(0, x)4 : dd−1x.

26This is the meaning of �reliable� in this context. We can look at it as in the Taylor expansion of a
smooth but non-analytic function f : R → R around a value x0 ∈ R. Although the Taylor series
does not converge, a Taylor polynomial Tnf(x0, x) for some order n ∈ N and small enough |x0 − x|
can lead to a good approximation of f(x). Mathematically the question is to understand what these
approximations tell us and in what sense they are �good� approximations. For stationary pertubation
theory such questions are studied in [RS78]. We are not following this route but continue with
quantum �eld theory.
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plays the role of the potential in the discussion of Remark 5.6. Hence we look at

H̃I(t) = eiH0tHIe
−iH0t =

∫
Rd−1

:eiH0tΦm(0, x)e−iH0t : dd−1x =

∫
Rd−1

:Φm(t, x)4 : dd−1x.

Using the formal expression (5.4) we get

S = 1+
∞∑
n=1

(−i)ngn

n!

∫
Rd

. . .

∫
Rd

T{:Φm(x1, t1)4 : . . . :Φm(xn, tn)4 :} dxndtn . . . dx1dt1

or

S = 1+

∞∑
n=1

(−i)ngn

n!

∫
Rd

. . .

∫
Rd

T{:Φm(y1)4 : . . . :Φm(yn)4 :} dyn . . . dy1 (5.6)

with yj = (tj , xj). Again T denotes time ordering. This expression has several problems.
First of all, the series does not converge to a unitary operator. After the discussion of
the last section this is not a big surprise. Now, however, not even the terms for �nite
n are properly de�ned, and any e�ort to caclulate scattering amplitudes in a naive way
by evaluating (5.6) formally leads to divergencies, either for small (infrared) or large
momenta (ultraviolet). Based on our experiences from Chapter 3 where we have studied
very simple interacting models we are not surprised about these di�culties either: to start
out with free �elds and treat the interacting model as a small perturbation thereof just
does not work. In Chapter 3 we have had to change to a new representation of the CCR
in order to get a mathematical well-de�ned quantum �eld. In the perturbative approach
we have to �nd related methods to overcome the divergencies.
As a �rst step we replace the coupling constant g in (5.5) by a compactly supported,

space and time (!) dependent smooth test function g ∈ D(R4). Hence we get

S(g) = 1+
∞∑
n=1

(−i)n

n!

∫
Rd

. . .

∫
Rd

g(y1) . . . g(yn)T{:Φm(y1)4 : . . . :Φm(yn)4 :} dyn . . . dy1.

(5.7)
This step removes all infrared divergencies from the model. To treat the latter we have
to send the function g to a �xed value, and handle the corresponding limit of (5.7)
appropriately, this is called the adiabatic limit. Some studies in this direction are already
done be Epstein and Glaser [EG73], in these notes we skip this part. Instead we will
have a short look at the local structure of the model, which is completely determined by
knowing S(g).
The second step needed to make sense of the formal expression in (5.6) is to de�ne the

time ordered product T{: Φm(y1)4 : . . . : Φm(yn)4 :} as an operator-valued distribution for
each �xed n . This can be done quite easily if all the spacetime events yj are di�erent.
Poblems arise, however, on coincidence points, i.e. if yj = yk holds for some j 6= k. To
resolve these problems we follow a recursive procedure introduced by Epstein and Glaser
[EG73]. The same method in the context of QED is descibed in detail in the book of
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Scharf [Sch14]. In a curved spacetime context this method was �rst studied by Brunetti
and Fredenhagen [BF00]. The latter is based on a slight modi�cation of the orginial
construction, which was proposed by Stora [Sto93]. We will loosely follow the paper of
Brunetti and Fredenhagen, but translated back to Minkowski space.

Remark 5.9. Therefore we proceed with two complementary strategies.

(1) We look at S(g) as a formal power series in g which is, however, well-de�ned term
by term.

S(g) = 1+
∞∑
n=1

∫
1

n!
Tn(y1, . . . , yn)g(y1) . . . g(yn) dyn . . . dy1

and for f ∈ S (Rd)n)

f 7→
∫
f(y1 . . . yn)Tn(y1, . . . , yn)g(y1) . . . g(yn) dyn . . . dy1 = Tn(f)

is a well-de�ned operator-valued distribution on the Hilbert space F+(L2(Hm)) =: H
of the free �eld. We do not care about convergence. In order to be able to de�ne
products S(g1) . . . S(gn) we need Tn(f) to be de�ned over the dense domain DS ⊂ H
which is independent of n and f . Operator-valued distributions equal quantum �elds
but possibly without a cyclic vector.

(2) We characterize S(g) axiomatically. In the case where S(g) is given as a formal power
series these axioms leads to conditions which we can use in the recursive construction
just mentioned. We will start with some remarks concerning calculations with formal
power series.

Remark 5.10 (Permutation invariance). Since the products g(y1) . . . g(yn) are permutation-
invariant, the Tn can also be chosen to be permutation-invariant. For a set of arguments
X = {y1, . . . , yn} we will frequently write Tn(X) = Tn(y1, . . . , yn). In terms of test
functions this means that Tn is completely determined if its value on symmetric test
functions is known. The space of the latter is denoted by Ssym((Rd)n). In other words
f ∈ Ssym((Rd)n) i� f ∈ S ((Rd)n) and f(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)) holds for all

(x1, . . . , xn) ∈ (Rd)n and all permutations π. A general distribution can be projected to
a permutation-invariant one by restricting it to symmetric test functions. We will fre-
quently be doing this by �rst de�ning a non-symmetric one (e.g. as a tensor product) and
then doing this projection (cf. the treatment of products of formal power series below).
For later reference let us add the remark that the space of linear combintions of pure
tensor powers of the form g⊗n = g ⊗ · · · ⊗ g is dense in Ssym((Rd)n), while the latter is
a closed subpsace of S ((Rd)n). Exercise: check both statements.

Remark 5.11. (a) (Formal power series, algebraic properties). Mathematically we can
de�ne a formal power series in g just as the seqeunce (Tn)n∈N of operator-valued
distributions. Writing them as a series is, however, a useful book keeping device
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when algebraic operations are concerned. Look at

U(g) =

∞∑
n=0

1

n!

∫
Un(x1, . . . , xn)g(x1) . . . g(xn) dx1 . . . dxn

V (g) =
∞∑
n=0

1

n!

∫
Vn(x1, . . . , xn)g(x1) . . . g(xn) dx1 . . . dxn

where Un(x1, . . . , xn), Vn(x1, . . . , xn) are operator-valued distributions on Hm with
domain DS . The linear combination for any λ ∈ C is given by

U(g) + λV (g) =
∞∑
n=0

1

n!

∫
(Un(x1, . . . , xn) + λVn(x1, . . . , xn))g(x1) . . . g(xn) dx1 . . . .

Further the product is given by

W (g) =
∞∑
n=0

1

n!

∫
Wn(x1, . . . , xn)g(x1) . . . g(xn) dx1 . . . dxn

where

Wn(x1, ..., xn) =
n∑

m=0

(
n

m

)
Um(x1, . . . , xm)Vn−m(xm+1, . . . xn).

Note that this quantity in general is not permutation-invariant. We can solve this
problem by a projection to the symmetric part (as described in Rem. 5.10), and (by
using the same symbol in abuse of notation) get

W (X) =
∑
I⊂X

U(I)V (X\I).

Note that this is probably not an operator-valued distribution S (R4n)→ Op(DS ,H).
The problem which might arise is that only for quantities of the form

W̃ (f1 ⊗ f2) = Um(f1)Vn−m(f2), f1 ∈ S ((Rd)m), f2 ∈ S ((Rd)n−m)

we can be sure to get an operator W̃ (f1 ⊗ f2). If ψ, φ ∈ DS , we know by the
nuclear theorem (Theorem 1.13) that W̃ψφ(f1⊗f2) = 〈ψ,W (f1⊗fn)φ〉 is a numerical
distribution, i.e. W̃ψφ can be smeared by any test function f ∈ S ((Rd)n). However,
it is not clear whether the quadratic form given by W̃ (f)[ψ, φ] = W̃ψ,φ(f) belongs
to an operator. Note that we have dealt with a similar problem already in Prop.
1.40. The method used there is not applicable here. We will solve this di�culty by
restricting the possible choices for the Un, Vn.
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(b) (Inverses). For expressions of the form 1+ T (g) we can de�ne the inverse as follows.

(1+ T (g))−1 =
∞∑
n=0

(−T (g))n.

We get

(1+ T (g))
∞∑
n=0

(−T (g))n =
∞∑
n=0

(−T (g))n +
∞∑
n=0

T (g)(−T (g))n

= 1+
∞∑
n=1

(−T (g))n −
∞∑
n=0

(−T (g))n+1 = 1.

We want that (1+ T (g))−1 again is a formal power series which yields

(1+ T (g))−1 =
∞∑
n=0

(−T (g))n =
∞∑
m=0

1

m!

∫
T̃m(x1, . . . , xm)g(x1) . . . g(xm) dx1 . . . dxm

(5.8)

with

T̃m(x1, . . . , xm) =

m∑
n=0

(−1)n
∑

I1,...,In

T (I1) . . . T (In)

where the second sum on the right-hand side is taken over all partitions of X =
{x1, . . . , xm} with X = I1 ∪ . . . ∪ In, Ij ∩ Ik = ∅ for all j 6= k and Ij 6= ∅ for all j.
This follows from expanding the powers of −T in (5.8), e.g.

(−T )0 = 1, (−T )1 = −T, (−T )2 = T 2 =

∫
T1(x1)g(x1) dx1 +

∫
T1(x2)g(x2) dx2 + . . .

Thus

(1+ T (g))−1 = 1−
from −T
T1(g)︸ ︷︷ ︸
=T̃1(g)

−
from −T
T2(g ⊗ g) +

from T 2

(T1 ⊗ T1)(g ⊗ g)︸ ︷︷ ︸
=T̃2(g⊗g)

+ . . .

etc27.

(c) (Adjoints). De�ne

S(g)∗ = 1+
∑
n

1

n!

∫
T+
n (x1, . . . , xn)g(x1) . . . g(xn)︸ ︷︷ ︸

=T ∗n(g⊗...⊗g)|DS

dx1 . . . dxn.

27Here, (T1 ⊗ T1)(g ⊗ g) is short for
∫
T1(x1)T1(x2)g(x1)g(x2) dx1dx2 to simplify the notation.
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(d) Products with operators A : DS → DS ⊂ H are given by

AS(g) = A+
∑
n

ATn(g ⊗ . . .⊗ g).

Thus, the set of formal power series becomes a complex ∗-algebra (provided we can
handle the problem with products mentioned above).

Now we want to present the already mentioned axioms the S-matrix has to ful�ll. In
this context we can look at S(g) either as formal power series on the free �eld Hilbert
space Hm or as a unit operator on the Hilbert space of an interacting �eld H (possibly
derived with methods similar to those discussed in Sect. 4.4).

De�nition 5.12. S(g) is called

(a) unitary if S(g)−1 = S(g)∗.

(b) translation invariant if

U(a,1)S(g)U(a,1)−1 = S(ga) ga(x) = g(x− a)

with U : P↑+ → U(Hm) or U(H) being the representation of the Poincaré group
associated to the free �eld (Hm) or the interacting �eld (H).

(c) Lorentz invariant if

U(0, 1)S(g)U(0, 1)∗ = S(Λg) Λg(x) = g(Λ−1x).

De�nition 5.13. For x, y ∈ R4 we write x & y if

x ∩ (y − V −) = ∅

where V
−
denotes the closed past cone.

Figure 11: Illustration of De�nition
5.13. In the left picture, y
lies in the past cone of x
but not vice versa so x & y
but y 6& x. Thus in the right
picture, we obviously have
x & y and y & x.

De�nition 5.14. S(g) is called causal if S(g1 + g2) = S(g1)S(g2) whenever supp g1 &
supp g2.

Remark 5.15. To motivate De�nition 5.14 let's have a look at the quantum mechanical
setting with a potential V (t). Assume that we switch the interaction potential V (t) on
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and o� with a cut o� function g : R → R. Hence we look at g(t)V (t). For g = g1 + g2

with g1, g2 ∈ C∞ and supp(g1) ⊂ (−∞, s), supp g2 ⊂ (s,∞) we get

gV = g1V + g2V.

Formally we can calculate the S-matrix according to Eqs. (5.2) and (5.4). Hence with
U0(t, s) = exp(−i(t− s)H0) we get

S(g1 + g2) = U0(0,+∞)Ũ(+∞,−∞)U0(−∞, 0)

= U0(0,+∞)Ũ(+∞, s)U0(s, 0)U0(0, s)Ũ(s,−∞)U0(−∞, 0) = S(g2)S(g1)

where the arguments ±∞ stand for the corresponding strong limits, and Ũ(t, s) is the
propagator used in Eq. (5.2). Also note that we have used the fact that in the de�nition
of S(g1) the interacting time evolution and the free time evolution between −∞ and s
coincide, such that we formally have

S(g1) = U0(0,+∞)Ũ(+∞,−∞)U0(−∞, 0) = U0(0,+∞)Ũ(+∞, s)U0(s, 0).

Our next task is to translate the axioms into conditions for the Tn.

Proposition 5.16. The following statements hold.

(1) If S(g) is unitary then T̃n = T+
n .

(2) If S(g) is translation invariant then

U(a,1)Tn(x1, . . . , xn)U(a,1)∗ = Tn(x1 + a, . . . , xn + a)

when written with test functions.

(3) If S(g) is Lorentz invariant then

U(a,Λ)Tn(x1, . . . , xn)U(a,Λ)∗ = Tn(Λx1, . . . ,Λxn).

(4) If S is causal, then {x1, . . . , xm} & {xm+1, . . . , xn} implies

Tn(x1, . . . , xn) = Tm(x1, . . . , xm)Tn−m(xm+1, . . . , xn). (5.9)

Remark 5.17. The formal expression used in Eq. (5.9) requires an explanation in term
of test functions. Hence, consider open subsets U1 ⊂ (Rd)m and U2 ⊂ (Rd)n−m such that
{x1, . . . , xm} & {xm+1, . . . , xn} holds for all (x1, . . . , xm) ∈ U1 and all (xm+1, . . . , xn) ∈
U2. Now we can choose test functions f1 ∈ Ssym((Rd)m) and f2 ∈ Ssym((Rd)n−m).
If supp fj ⊂ Uj , j = 1, 2 holds, the operator-valued distribution should factorize as
Tn(f1 ⊗ f2) = Tm(f1)Tn−m(f2). This should be regarded as the precise version of the
formal statement in Eq. (5.9).

Proof. Only the last part requires a discussion. Consider open sets U1, U2 as in the
previous remark and test functions g1, g2 ∈ S (Rd) satisfying supp g⊗m1 ⊂ U1 and
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supp g
⊗(n−m)
2 ⊂ U2. By assumption this implies S(g1 + g2) = S(g1)S(g2). Expanding

S as a power series gives

∞∑
n=0

n∑
m=0

1

m!(n−m)!

∫
Tn(x1, . . . , xn)g1(x1) . . . g1(xm)g2(xm+1) . . . g2(xn) dx1 . . . dxn

= S(g1 + g2) = S(g1)S(g2) =
∞∑

n=0

n∑
m=0

1

m!(n−m)!

∫
Tm(x1, . . . , xm)Tn−m(xm+1, . . . , xn)g1(x1) . . . g2(xn)dx1 . . . dxn

Comparing the two series term by term, leads to

Tn(g⊗m1 ⊗ g⊗(n−m)
2 ) = Tm(g⊗m1 )T (g

⊗(n−m)
2 )

Now the statement follows as linear combinations of tensor products g⊗m1 are dense in
Ssym((Rd)m) and similarly for g2; cf. Remark 5.10.

5.3 Recursive Construction o� the Diagonal

In this section we will construct the Tn by an inductive procedure on the space Rdn\∆n

with ∆n = {(x, . . . , x) |x ∈ Rd}. To this end it is convenient not to look only at
T (: Φm(x1)4 : . . . : Φm(xn)4 :) but to allow more general interaction Lagangians, i.e.
T (L1(x1) . . .Ln(xn)) with28 Lj(xj) =:Φm(xj)

kj : . A generalization to also include deriva-
tives of the �elds is straightforward but avoided here; cf. [EG73]. We start with a col-
lection of properties the Tn should satisfy. They are mostly derived from Proposition 5.16.

Property 1. (Well-posedness). The symbols T (L1(x1) . . .Ln(xn)) are well-de�ned operator-
valued distributions on the Hilbert space Hm of the free �eld with invariant domain DS .

Property 2. (Symmetry). Any time-ordered product T (L1(x1) . . .Ln(xn)) is symmetric
under permutations of indices, i.e. the action of the permutation group of the index set
{1, . . . , n} gives (cf. Rem. 5.10)

T (Lπ(1)(xπ(1)) . . .Lπ(n)(xπ(n))) = T (L1(x1) . . .Ln(xn))

in the sense of distributions.

Property 3. (Causality). Consider any set of points (x1, . . . , xn) ∈ (Rd)n and any full
partition of the set {1, . . . , n} into two non-empty subsets I and Ic such that no point
xi with i ∈ I is in the past of the points xj with j ∈ Ic, i.e. xi /∈ J−(xj)

29 for any i ∈ I
and j ∈ Ic. Then the time-ordered distributions are required to satisfy the following

28Here, we use the notation Tn(x1, . . . , xn) = T (Lj1(xj1), . . . ,Ljn(xjn)) where the left hand side de-
scribes the time-ordered product and the L are the interaction Lagrangians.

29Here, J−(xj) = xj − V 0 where V 0 = {v ∈ Rp | g(u, v) ≥ 0, v0 ≥ 0} is the past cone. Thus J−(xj) is
the past and analogously, J+(xj) the future causal cone at xj .
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factorization property (cf. Rem. 5.17)

T (L1(x1) . . .Ln(xn)) = T
(∏
i∈I
Li(xi)

)
T
( ∏
j∈Ic
Lj(xj)

)
Property 4. (Translation covariance).

T (L1(x1 + a) . . .Ln(xn + a)) = U(a,1)T (L1(x1) . . .Ln(xn)U(a,1)∗

Remark 5.18. There is one important point missing, which addresses our concerns
about products from Rem. 5.11. We are going to restrict the operator-valued distriutions
T (L1(x1) . . .Ln(xn)) to be within a certain class which is well-behaved under products.
To this end we have to introduce some additional notations. As already stated we have
Lj(x) = :Φm(x)kj : . Now for any integer r ≥ 0 we can de�ne

L(r)
j (x) =

kj !
(kj−r)! :Φm(x)kj−r : for kj − r > 0

L(kj)
j (x) = kj !

L(r)
j (x) = 0 for kj − r < 0.

We can look at L(r)(x) as a functional derivative of L(x) with respect to Φm(x). This
point of view can be made rigorous by using commutators. Please check that L(1)(x)
satisi�es and is uniquely determined by the conditon (cf. [BF00, Lemma 2.3])∫

f(x, y)[L(x),Φm(y)]ψ dx dy =

∫
f(x, y)E(x, y)L(1)(x)ψ dx dy (5.10)

with f ∈ S (Rd×Rd) and ψ ∈ DS . The distribution E ∈ S ′(Rd×Rd) is the �comutator
function� given by ∫

f(y)g(y)E(x, y) dx dy = 〈Ω,Φm(f)Φm(g)Ω〉.

Note that we have implicitly claimed that the product of the numerical distribution E
and the operator-valued distribution L(1)(x) on the right-hand side of (5.10) exists. Since
E is translation invariant, this case is covered by the following theorem ([EG73, Theorem
0])

Theorem 5.19. Let F ∈ S ′(Rd·n) be a tempered distribution such that F (x1, . . . , xn) =
F (x1 + a, . . . , xn + a) for all a ∈ Rd. Then, for any multi-index r = (r1, . . . , rn) and any
f ∈ S (Rd·n)∫

F (x1, . . . , xn) :Φm(x1)r1 : . . . :Φm(xn)rn :f(x1, . . . , xn) dx1 . . . dxn

is a well-de�ned operator on DS → DS ⊂ Hm. It depends continuously on f in the
sense that the vector obtained by applying it to any vector of DS depends continuously
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on f in the norm topology of Hm.

Remark 5.20. By looking at commutators and applying Eq. (5.10) we can reduce the
order kj of products : Φm(x1)k1 : . . . : Φm(xn)kn : . Combining this with an induction
argument this leads to the generalized Wick expansion theorem (alternatively look at
[Hep96])

Lj1(x1) . . .Ljq(xq) =
∑

s1,...,sq

〈Ω,L(s1)
j1

(x1) . . . L
(sq)
jq

(xq)Ω〉
:Φm(x1)s1 . . .Φm(xq)

sq :

s1! . . . sq!
. (5.11)

Hence the product of Wick monomials : Φm(xj)
kj : leads to a Wick polynomial with dis-

tributional coe�cients. The latter are translation invariant such that we can apply Thm.
5.19 to see that each term on the right-hand side of (5.11) is an operator-valued dis-
tribution. Using Eq. (5.11) again, a straightforward calculation shows that the product
W (x1, . . . , xn) = U(x1, . . . , xk)V (xk+1, . . . , xn) of two such polynomials U(x1, . . . , xk),
V (xk+1, . . . , xn) is again a polynomial of the same type and therefore an operator-valued
distribution W (x1, . . . , xn) on (Rd)n. In other words, as long as we can expand the
T (Lj1(x1) . . .Ljq(xq)) into Wick polynomials as just discussed, all the products of dis-
tributions we encounter are well-de�ned as (operator-valued) distributions and all the
concerns from Rem. 5.11 are resolved. Based on that observation we add the condition

Property 5. (Causal Wick Expansion).

T (L1(x1) . . .Ln(xn)) =
∑

j1,...,jn

〈Ωω, T (L(j1)
1 (x1) . . .L(jn)

n (xn))Ωω〉
:Φj1

m(x1) . . .Φjn
m (xn) :

j1! . . . jn!

Remark 5.21 (Induction step). We start the induction by setting T (1) = 1 and
T (L) = L and assume that the time-ordered products for 1 < l ≤ n − 1 factors
have been constructed and satisfy all the de�ning properties. In a �rst step, we de�ne
T (L1(x1) . . .Ln(xn)) on Rd·n\∆n where ∆n again is the set of coincidence points.

Remark 5.22. The basic idea for the de�nition of T (L1(x1) . . .Ln(xn)) is to use the
expression

T̃ (x1, . . . , xn) = T (L1(x1) . . .Lk(xk))T (Lk+1(xk+1) . . .Ln(xn)).

Together with Property 5, the discussion in Rem. 5.20 shows that products of this form
are operator-valued distributions on (Rd)n, and by the induction assumption both factors
on the right-hand side of this equation are known. On the whole space, T̃ does not de�ne
the correct time ordered products (since in general we do not have xj & x` for all
j = 1, . . . k and all ` = k + 1, . . . n). But we can restrict T̃ to the set

C = {(x1, . . . , xn) ∈ (Rd)n |xj & x` ∀j = 1, . . . , k ∀` = k + 1, . . . , n} (5.12)

and here the ordering is correct. Since C ⊂ (Rd)n is open this restriction de�nes an
operator-valued distribution and our construction is complete � at least on C. All we
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have to do is apply the same idea to all sets arising from C by permuting the indices
j = 1, . . . , n, and look whether these local solutions �t together. To proceed in that
direction, we need the following de�nition. Note that from here on we will follow [BF00]
very closely.

De�nition 5.23. Let J be the set of all non-empty proper subsets I of {1, . . . , n}. For
each I ∈ J we de�ne in analogy to (5.12)

CI = {(x1, . . . , xn) ∈ (Rd)n |xi /∈ J−(xj), i ∈ I, j ∈ Ic}.

Lemma 5.24. The CI overlap (Rd)n\∆n. In other words we have⋃
I∈J
CI = (Rd)n\∆n.

Proof. The inclusion ∪ICI ⊆ (Rd)n\∆n is obvious. The opposite inclusion is proved as
follows. Consider any set of points (x1, . . . , xn) such that xi 6= xj for some i 6= j. This
implies that either xi is in the causal future of xj , or xi is in causal past of xj , or both
are spacelike separated. In all cases we can �nd a spacelike hyperplane Σ such that one
point is in future of Σ and the othe in the past, while none of the xk, k = 1, . . . , n is
an element of Σ. With slight loss of generality we assume that xi is in the future of Σ
(the other case is easily adopted). Now we de�ne I = {k |xk in the future of Σ}. I is
non-empty since i ∈ I and it does not coincide with J since j 6∈ I. Hence I ∈ J and
(x1, . . . , xn) ∈ CI .

Remark 5.25. We use the short hand notations

T I(xI) = T
(∏
i∈I
Li(xi)

)
xI = (xi, i ∈ I).

The �rst step now is to set on any CI

TI(x) := T I(xI)T
Ic(xIc)

as an operator-valued distribution. Recall from Rem. 5.22 that TI is an operator-valued
distribution on the whole space (Rd)n and that its restriction has the correct operator
ordering on the open subset CI of (Rd)n. We now glue together all operators TI for di�erent
I ∈ J . To this end we have to show that on the overlaps CI1 ∩CI2 the (restrictions of) the
corresponding distributions TI1 and TI2 coincide. This is done in the following proposition
(Prop. 4.2 of [BF00]).

Proposition 5.26. For any choice of I1, I2 ∈ J such that CI1 ∩ CI2 6= ∅ we have

TI1 |CI1∩CI2 = TI2 |CI1∩CI2

in the sense of operator-valued distributions over (Rd)n\∆n.
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Proof. Let I1, I2 ∈ J and x = (x1, . . . , xn) ∈ CI1 ∩ CI2 . Using the causality property
(Property 3) which by assumption is valid for time-ordered products of less than n factors
we �nd

T I1(xI1) = T I1∩I2(xI1 ∩ xI2)T I1∩I
c
2 (xI1∩Ic2 )

T I
c
1 (xIc1 ) = T I

c
1∩I2(xIc1 ∩ xI2)T I

c
1∩Ic2 (xIc1∩Ic2 )

(5.13)

and similarly for T I2 and T I
c
2 . Now note that (x1, . . . , xn) ∈ CI1 ∩ CI2 together with the

de�nition of CI implies that xi with i ∈ I1 ∩ Ic2 are neither in the causal past not in the
causal future of xj with j ∈ Ic1 ∩ I2. In other words they are spacelike separated, and
therefore T I1∩I

c
2 and T I

c
1∩I2 commute. This follows because we can write both terms by

Property 5 (causal Wick expansion) as Wick polynomials, and Wick powers of the free
�eld mutually commute at spacelike distances. Hence using (5.13) and Property 3, on
CI1 ∩ CI2 we get

TI1 = T I1∩I2T I
c
1∩I2T I1∩I

c
2T I

c
1∩Ic2 = T I2T I

c
2 = TI2 .

Remark 5.27. Now let {fI}I∈J be a locally �nite smooth partition of unity of (Rd)n\∆n

subordinate to {CI}I∈J . Also recall that by remarks 5.20 and 5.22 we have de�ned TI
as an operator-valued distribution on CI with domain DS . We can extend it to all of
(Rd)n \∆n by f 7→ fITI(f) = TI(fIf), where f is a smooth test function with compact
support in (Rd)n \∆n. Since the set J is �nite we can just add all fITI to get

0T (L1(x1) . . .Ln(xn)) :=
∑
I∈J

fITI (5.14)

which is an operator-valued distribution on (Rd)n \ ∆n. Now, the main result of this
section is the following (Thm. 4.3 of [BF00]).

Theorem 5.28. The expression in Eq. (5.14) is a well-de�ned operator-valued distribu-
tion on (Rd)n\∆n with domain DS ⊂ H. It does not depend on the choice of the partition
{fI}I∈J and satis�es Properties 1-5 (on (Rd)n\∆n).

Proof. We have already seen that 0T is an operator-valued distribution. Hence let us
show the independence on the choice of the partition of unity. To this end we choose a
second partition {f ′I}I∈J . For x ∈ (Rd)n\∆n let K = {I ∈ J |x ∈ CI}. Since K is �nite
and the CI are open, there is an open neighbourhood V of x such that V ⊂ ∩I∈KCI .
Similarly J \ K is �nite, too, and we can choose V such that

V ∩ supp(fI) = V ∩ supp(f ′I) = ∅. (5.15)

This implies ∑
I∈J

(fI − f ′I)TI |V =
∑
I∈K

(fI − f ′I)TI |V .
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By Prop. 5.26 the restriction of TI to V is independent of the choice of I ∈ K. Due to
Eq. (5.15) and by the property of the FI , F

′
I we have

∑
I∈K fI =

∑
I∈K f

′
I = 1 on V ,

and therefore the de�nition of 0T does not depend on the choice of the fI , as stated.
This shows Property 1. For later reference let us also note that our arguments imply that
the restriction of 0T coincides with the corresponding restriction of TI for any I ∈ K. In
other words 0T |V = (TI)|V holds for all I ∈ K.
To show permutation invariance (Property 2) we look at the permuted distribution

0T π(x1, . . . , xn) = 0T (Lπ(1)(xπ(1)) . . .Lπ(n)(xπ(n))). Since J is invariant under permuta-
tions we get the expansion

0T π =
∑
I∈J

fπI T
π
I =

∑
I∈J

fππ(I)T
π
π(I).

But T ππ(I) = TI and {fππ(I)}I∈J is a partition of unity subordinate to {CI}I∈J . Hence
permutation invariance follows from the independence of 0T on the choice of the fI as
just proven.
The next step concerns causality (Property 3). For an arbitrary x ∈ (Rd)n\∆n we reuse

the set K ⊂ J and the neighborhood V of x introduced above. Hence x ∈ V ⊂ ∩I∈KCI .
By Eq. (5.15) we have 0T (x) = TI(x) which from Remark 5.25 satis�es causality by
de�nition.
For Property 4 (translation invariance) consider a ∈ Rd and the action (x1, . . . , xn) 7→

(x1 + a, . . . , xn + a) on (Rd)n, and note that the sets CI are invariant under this action.
The same is true for the TI since they are de�ned (Def. 5.22) as the product of two
terms which are translation invariant under the induction hypothesis. Furthermore, the
translated functions fI,a given by fI,a(x1, . . . , xn) = f(x1 + a, . . . , xn + a) are again a
partition of unity. Hence by the independence of 0T on the choice of the fI we get

0T (x1 + a, . . . , xn + a) =
∑
I∈J

fI(x1 + a, . . . , xn + a)TI(x1 + a, . . . , 1xn + a)

=
∑
I∈J

fI,a(x1, . . . , xn)TI(x1, . . . , xn) = 0T (x1, . . . , xn)

which shows translation invariance.
Finally, Property 5 follows from Remark 5.25 by a straightforward application of the

generalized Wick Theorem.

5.4 Extension to the Diagonal

The remaining step is to extend 0T to the diagonal ∆n. This task is simpli�ed by two
facts.
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• The form of 0T on Rn·d\∆n by Property 5 is

T (L1(x1) . . .Ln(xn)) =
∑

j1,...,jn

〈Ωω, T (L(j1)
1 (x1) . . .L(jn)

n (xn))Ωω〉:Φ
j1
m(x1) . . .Φjn

m (xn) :

j1! . . . jn!
.

We only have to extend the numerical distribution, i.e. the vacuum expectation value
of T as the fraction on the right-hand side is de�ned on all of Rn·d anyway.

• By translation invariance and since the translation group acts transitively, we only
have to extend T̃n(y1, . . . , yn−1) to y1 = . . . = yn−1 = 0 as T (L1(x1), . . . ,Ln(xn)) =
Tn(x1, . . . , xn) and because we have translation invariance

T̃n(x1 − x2, . . . , xn−1 − xn) = Tn(x1, . . . , xn),

cf. discussion of Wightman distributions.

Hence the message is that we have to extend a distribution on Rd \ {0} to the origin.
Again we will closely follow [BF00], while they are following Steinmann [Ste71]. Our �rst
step is to introduce a tool which allows us to measure the strength of a singularity at the
origin.

De�nition 5.29 (Dilation of function). De�ne

Λ : R+ ×D(Rd)→ D(Rd)

(λ, φ) 7→ φλ := λ−dφ(λ−1 · ).

and for t ∈ D ′(Rd)

tλ(φ) =: t(φλ).

Remark 5.30. Please convince yourself that for t ∈ L1
loc(R

d) and the corresponding
distribution t(φ) =

∫
t(x)φ(x)dx the operation from De�nition 5.29 is given by

tλ(φ) =

∫
t(λx)φ(x) ddx, (5.16)

where in both equations φ is an arbitrary test function φ ∈ D(Rd).

De�nition 5.31. We say that t ∈ D ′(Rd) has scaling degree sd(t) = ω with respect to
the origin in Rd if ω is the in�mum over all ω′ ∈ R for which

lim
λ↓0

λω
′
tλ(f) = 0

holds for all f ∈ D(Rd).

Remark 5.32. Strictly speaking we have de�ned sd(t) only for distributions which are
de�ned on all of Rd. However, since the test function space D(Rd \ {0}) is invariant

89



5 Perturbative Theory à la Epstein-Glaser

under the dilations from Def. 5.29, we can easily extend the de�nition to elements from
D ′(Rd \ {0}), i.e. the distributions we want to extend to the origin.

Example 5.33. To get a better understanding of the concept just introduced, ket us
have a short look at some examples.

1. (Regular distribution). Consider t ∈ L1
loc(R

d) which is continuous in the origin, and the
corresponding regular distribution. In other words for any test function f ∈ D(Rd) the
quantity tλ(f) is given by Eq. (5.16). Continuity of t at 0 implies that limλ↓0 t(λx) =
t(0) for all x ∈ Rd. Since f is compactly supported, dominated convergence implies
that

lim
λ↓0

tλ(f) = t(0)

∫
Rd

f(x)dx.

Hence limλ↓0 λ
ω′tλ(f) = 0 holds for all ω′ > 0 such that the scaling degree becomes

sd(t) ≤ 0.

2. (Dirac measure). Recall that δ ∈ S ′(Rd) ⊂ D ′(Rd) is given by δ(f) = f(0) for any
f ∈ S (Rd). Hence, with the dilation fλ we get according to Def. 5.29 δ(fλ) = λ−df(0).
By choosing f(0) > 0 we see that

lim
λ↓0

λω
′
δλ(f) = λω

′−df(0) = 0 (5.17)

holds i� ω′ > d, which implies sd(δ) = d.

3. (Derivative of Dirac measure). We can extend the previous example with a polynomial
P on Rd of degree p. It de�nes the partial di�erential operator

P (∂)f(x) =
∑
|α|≤p

cαDαf

with cα ∈ C. Applying P (∂) to δ leads to (cf. Example 1.8)

P (∂)δ(f) =
∑
|α|≤p

cα(−1)|α|Dαf(0) f ∈ S (Rd). (5.18)

We can choose f such that only the derivatives of order p are non-zero at x = 0, i.e.

P (∂)δ(fλ) = (−1)p
∑
|α|=p

cα(−1)|α|Dαfλ(0)

= (−1)pλ−(p+d)
∑
|α|=p

cαDαf(0) = κλ−(p+d)

with some κ 6= 0. Hence as in Eq. (5.17) we �nd sd
(
P (∂)δ

)
= d+ p.

4. (Feynman propagator). The Feynmann propagator is (roughly speaking) the time-
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ordered two point function. Hence for the free scalar �eld we get

EF (x1 − x2) = 〈Ω0, T (Φm(x1)Φm(x2))Ω0〉.

It can be written as

EF (x1 − x2) = (2π)−d
∫

eip·(x1−x2)

p2 −m2 + iε
ddp.

A short calculation shows that sd(EF ) = d− 2 holds.

5. (Homogeneous distributions). If t ∈ D ′(Rd) is homogeneous of order α at the origin,
i.e. tλ = λαt, then sd(t) = −α. In other words the scaling measures up to a certain
degree the homogeneity of a distribution.

6. (In�nite degree). The smooth function x → exp(1/x), x ∈ R+ is not de�ned at the
origin and its scaling degree with respect to the origin is clearly in�nite.

The following lemma (cf. Lemma 5.1. of [BF00]) summarizes some properties of the
scaling degree. They are needed for the theorems presented below.

Lemma 5.34. The scaling degree obeys the following properties.

(a) Let t ∈ D ′(Rd) have sd(t) = ω at 0, then

1. Let α ∈ Nn be any multiindex, then sd(∂αt) ≤ ω + |α|.
2. Let α ∈ Nn be any multiindex, then sd(xαt) ≤ ω − |α|.
3. Let f ∈ C∞(Rd), then sd(ft) ≤ sd(t).

(b) For ti ∈ D ′(Rdi), i = 1, 2 we have

1. sd(t1 ⊗ t2) = sd(t1) + sd(t2),

2. and if d1 = d2 = d we have sd(t1 + t2) ≤ max
(
sd(t1), sd(t2)

)
.

Proof. All statements are straightforward, except the third case in (a). Here, we refer the
reader to the proof of Lemma 5.1. in [BF00].

Remark 5.35. Now we want to extend distributions using the scaling degree. There are
three possible cases. When the scaling degree is +∞, then no extension to a distribution
on R exists. When the scaling degree ω is �nite, but ω ≥ d then a �nite-dimensional set
of extensions exists. If ω < d holds, there is a unique extension. We �rst study this case.

Remark 5.36. There are two technical details about distributions which are important
in the proof of the next theorem. Since we do not use them otherwise, we add this remark
here rather in Sect. 1.1.

1. The support of δ contains just the origin and this does not change if we look at
P (∂)δ with a di�erential operator as in Eq. (5.18). The more non-trivial fact is that
these are the only distributions T ∈ D(Rd) with supp(T ) = {0}; cf. Thm V.11 of
[RS80].
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2. The space D ′(Rd) is equipped with the weak-∗-topology. Hence a sequence Tn ∈
D ′(Rd), n ∈ N converges to a distribution T ∈ D ′(Rd) i� limn→∞ Tn(f) = T (f)
holds for all f ∈ D(Rd). If on the other hand we only know that all sequences Tn(f),
n ∈ N with arbitrary test functions f are Cauchy sequences we can de�ne a linear
functional T by T (f) = limn Tn(f). This T is not just linear but even continuous,
i.e. T ∈ D ′(Rd). This fact is called sequential completeness of D ′(Rd). To prove it
requires knowledge from the topology of D(Rd). A possible strategy is to use Prop.
1.16 together with the uniform boundedness principle; cf. Thm 1.45 of [HS09].

Theorem 5.37 (Thm. 5.2 of [BF00]). Let t0 ∈ D ′(Rd\{0}) have scaling degree ω < d
with respect to the origin. There exists unique t ∈ D ′(Rd) with scaling degree ω such that
t(φ) = t0(φ) for all φ ∈ D(Rd\{0}).

Proof. Uniqueness: Assume there is a second t̃ with (t − t̃)|Rd\{0} = 0. This implies

supp(t − t̃) = {0} so by Rem. 5.36 t − t̃ is given by P (∂)δ with is a polynomial P of
degree p and the delta distribution δ. By the discussion in Ex. 5.33 this distribution has
scaling degree d + p (cf. also Lem. 5.34). Hence if P 6= 0 we get sd(t − t̃) = d + p ≥ d.
Since by assumption t and t̃ have a scaling degree smaller than d this contradicts the last
statement in Lem. 5.34. Hence P = 0 and t = t̃.

Existence: Let us now consider a smooth function θ of compact support such that
θ = 1 in a neighbourhood of the origin. Set θλ(x) := θ(λx), λ ∈ R and

t(n) := (1− θ2n)t0 n ∈ N

where now t(n) is a sequence of distributions de�ned on the whole Rd. We wish to show
that the sequence converges in the weak-∗-topology of D ′(Rd). According to Rem. 5.36
it is su�cient to show that for all f ∈ D(Rn) the numbers t(n)(f), n ∈ N form a Cauchy
sequence. Hence we look at

(t(n+1) − t(n))(f) = (ft0)(θ2n − θ2n+1) = 2−nd(ft0)2−n(θ − θ2).

Here we have used two facts. Firstly the product of a distribution T with a function ϑ
is given by (ϑT )(f) = T (ϑf); cf. Ex. 1.8. If ϑ is a valid test function we can reverse the
roles of f and ϑ to get (ϑT )(f) = (fT )(ϑ). Secondly we have used the de�nition of the

scaled distribution Tλ in Def. 5.29 to extract a factor (2−n)
d
. Rewriting this equation

with ω′ ∈ R we get

(t(n+1) − t(n))(f) = 2−n(d−ω′)(2−nω′(ft0)2−n(θ − θ2)
)
.

According to Lemma 5.34 (a.3) we have sd(ft0) ≤ ω. Hence if ω′ > ω the de�nition
of the scaling degree implies that the sequence

∣∣2−nω′(t0)2−n(θ − θ2)
∣∣ converges to zero

and is in particular bounded by a constant C. If we choose ω′ smaller than d (which is
possible due to ω < d by assumption), we get the bound∣∣t(n+1) − t(n)(f)

∣∣ ≤ C2−n(d−ω′)
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with an absolutely summable sequence 2−n(d−ω′). This implies that for any ε > 0 we can
�nd an Nε ∈ N such that∣∣t(n)(f)−t(m)(f)

∣∣ ≤ ∣∣t(n)(f)−t(n+1)(f)
∣∣+ · · ·+ |t(m−1)(f)−t(m)(f)

∣∣ ≤ ∑
j>Nε

2−j(d−ω
′) < ε

holds for n,m > Nε and m > n. Hence t(n)(f) is for all f ∈ D(Rd) a Cauchy sequence,
such that the limits limn→∞ t

(n)(f) =: t(f) exists and de�ne a distribution t ∈ D ′(Rd)
which is de�ned on all of Rd.
To see that t(f) = t0(f) for all f ∈ D(Rd \ {0}) holds, note that there is an open

neighborhood V ⊂ Rd of the origin with supp f ∩ V = ∅. Since θ is compactly supported
there is an N ∈ N with supp

(
θ2n
)
⊂ V for all n > N . Hence (1− θ2n)f = f for all such

n and we get t(f) = limn→∞ t
(n)(f) = t0(f) by the de�nition of t(n).

This �nishes the construction of the extension t of t0. It remains to proof that the
scaling degree of t is ω. For this we refer to [BF00].

Remark 5.38. We now deal with the extension procedure in case a distribution has
a �nite scaling degree ω ≥ d. This extension procedure corresponds to renormalization
in other schemes. To adhere more to the standard notation we introduce the degree of
singularity ρ := ω − d. This is the analog of the degree of divergence of a Feynman
diagram.

Remark 5.39. Let Dρ(R
d) be the set of all smooth functions of compact support which

vanish of order ρ at the origin. The space of distributions T satisfying T (f) = 0 for
all f ∈ Dρ(R

d) � i.e. the orthocomplement of Dρ(R
d) in D ′(Rd) � is spanned by deriva-

tives of the delta distributions (please check yourself). Hence a family of test functions
wα ∈ D(Rd) with Dαwβ = mδαβ for all multiindices α, β satisfying |α|, |β| ≤ ρ spans an

algebraic complement of Dρ(R
d) in D(Rd). This complement is �nite-dimensional, since

the orthocomplement is �nite-dimensional, too. Hence we get a projectionW from D(Rd)
onto Dρ(R

d), by

Wf = f −
∑
|α|≤ρ

wα∂
αf(0).

Now the idea is to extend t0 to a functional on Dρ(R
d) with ρ su�ciently large and then

to use a projection W . This procedure is implemented in the next theorem.

Theorem 5.40 (Thm. 5.3 of [BF00]). Let t0 ∈ D ′(Rd\{0}) have a �nite scaling degree
ω ≥ d. Then there exist extensions t ∈ D ′(Rd) of t0 with the same scaling degree. They
are uniquely determined by their values on the test functions wα chosen in the previous
remark.

Proof. Since the wα span an algebraic complement of Dρ(R
d), any f ∈ D(Rd) can be

uniquely decomposed as f = f1 + f2 where f1 =
∑
|α|≤ρwα∂

αf(0) and f2 ∈ Dρ(R
d) has
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the form

f2(x) =
∑
|α|=ρ+1

xαgα(x)

where gα ∈ D(Rd). This can be checked with the Taylor expansion of f2 around 0 (it
does not converge since f is compactly supported, hence we have to use a remainder
term). By assumption all terms up to order ρ vanish and therefore we can extract the
monomials xα with α = ρ + 1 leaving smooth quotients gα. Hence a general element T
of D ′(Rd) can be written as

t(f) =
∑
|α|=ρ+1

(
xαt0

)
(gα) + t(f1),

where the last term is uniquely determined by the values t(wα) = cα. Hence we get

t(f) =
∑
|α|=ρ+1

(
xαt0

)
(gα) +

∑
|α|≤ρ

cα∂
αf(0). (5.19)

Please check that we really get t(wα) = cα with the decomposition of f and the expression
in Eq. (5.19). To proceed, note that all f ∈ D(Rd) with supp f ⊂ Rd \ {0} vanish on a
neighborhood of the origin. Hence f ∈ Dρ(R

d) for all ρ. This implies f = f2 for such f
and the corresponding gα still have support in Rd \ {0}. Hence, if t is an extension of t0
it has to satisfy

t(f) =
∑
|α|=ρ+1

(
xαt
)
(gα) =

∑
|α|=ρ+1

(
xαt0

)
(gα).

Now note that by Lemma 5.34, xαt0 has scaling degree smaller than or equal to sd(t0)−
ρ− 1. We can choose ρ such that this quantity is strictly smaller than d and then all the
distributions xαt0 have a unique extensions t̃α to D(Rd); cf. Thm. 5.37. This reasoning
shows that all distributions of the form

t(f) =
∑
|α|=ρ+1

t̃α(gα) +
∑
|α|≤ρ

cα∂
αf(0),

with t̃α just de�ned and arbitrary cα ∈ C are extensions of t0 and that any extension
has to be of this form. Each of those t is uniquely determined by the cα which we have
already seen to be equal to t(wα). This proves the existence and uniqueness statement.
For the remaining part of the proof, i.e. to show that sd(t) = sd(t0) holds, we refer again
to [BF00].

Remark 5.41. Let us come back to the results of the previous section. There we have
constructed the time ordered products T (L1(x1) . . .Ln(xn)) as operator valued distribu-
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tions on the set (Rd)n \∆n. They can be expanded as

T (L1(x1) . . .Ln(xn)) =
∑

j1,...,jn

〈Ωω, T (L(j1)
1 (x1) . . .L(jn)

n (xn))Ωω〉
:Φj1

m(x1) . . .Φjn
m (xn) :

j1! . . . jn!

(5.20)
where the Wick monomials :Φj1

m(x1) . . .Φjn
m (xn) :are well de�ned operator valued distribu-

tions on all of (Rd)n. Only the numerical diustributions 〈Ωω, T (L(j1)
1 (x1) . . .L(jn)

n (xn))Ωω〉
need further treatment. But we know that they are translation invariant such that we
can introduce distributions tj1,...,jn0 ∈ D ′

(
(Rd)n−1 \ {0}

)
satisfying

〈Ωω, T (L(j1)
1 (x1) . . .L(jn)

n (xn))Ωω〉 = tj1,...,jn0 (x1 − x2, . . . , xn−1 − xn). (5.21)

In other words we are factoring out the orbits of the translation group. Therefore the
diagonal ∆n reduces to the origin and the tj1,...,jn0 are de�ned on (Rd)n−1 \ {0}. Now we
can apply the extension procedure just studied to get distributions tj1,...,jn de�ned on all
of (Rd)n−1 � including the origin, and via Eqs. (5.20) and (5.21) we can extend the time
ordered products T (L1(x1) . . .Ln(xn)) to the diagonal ∆n.
This �nishes our construction and we end up with the perturbative construction of the

S-matrix as (cf. Eq. (5.7) in Sect. 5.2)

S(g) = 1+

∞∑
n=1

(−i)n

n!

∫
Rd

. . .

∫
Rd

g(y1) . . . g(yn)T{:Φm(y1)4 : . . . :Φm(yn)4 :} dyn . . . dy1.

This is now a formal power series in the coupling g with coe�cients T{: Φm(y1)4 : . . . :
Φm(yn)4 :} which are well de�ned operator valued distributions on (Rd)n. Hence, for a
given g and state vectors ψ, φ ∈ H in the Hilbert space H = F+

(
L2(Hm)

)
of the free

�eld we can calculate the scattering amplitude 〈φ, S(g)ψ〉 perturbatively term by term.
In general the series we get that way does not converge, but we still can get reliable
predictions by stopping the expansion after �nitely many orders (cf. the discussion in
Sects. 5.1 and 5.2). Since ψ, φ are states of the free �eld we automatically have an
interpretation in terms of particles (cf. the corresponding discussion in Sect. 4.4).
At that point an additional problem arises. The extension of Thm. 5.40 is not unique

but depends on the parameters cα = t(wα) from Eq. (5.19) we have to choose. This intro-
duces more free parameters into our model. To many parameters are bad, since if we have
too much of them we can �t basically everything (like the famous �elephant�). Therefore
theories are divided into two categories depending on the number of free parameters
renormalization introduces. If it remains �nite the theory is called renormalizable, oth-
erwise non-reonormalizable. A detailed analysis of the scaling degree leads to conditions
for renormalizability cf. [EG73]. The Φ4 model we have looked at is renomalizable in four
dimensions.

The next step would be to present some calculations, however, we skip this part (at
least in the present version of this document) and refer the reader to the thesis of Pinter
[Pin00].
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