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Tensor networks and (artificial) neural networks allow us to tackle
previously unsolvable problems in quantum physics and computer science

Tensor Networks

•Developed simultaneously in quantum physics and numerical mathematics
• Provide a way to decompose tensors of high order or dimensionality
•Represent tensors by contractions of many small tensors
• Inherently linear, basic arithmetic operations can be expressed
• Known to represent ground states of certain systems faithfully
•Methods to perform time evolution and much more exist

Figure taken from A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States by R. Orus

Neural Networks

• Approximate function by composition and summation of simple functions
• Based on connectionist paradigm, inspired by the brain
• Topology of the networks reflects causal structure of data
• Expressive power owed to composition of simple non-linearities
• Term Deep Learning refers to high number of compositions
• Special kinds of networks for images, time-series data, etc.
•Can be used for regression, classification, data generation, compression ...

Figure taken from 2centsapiece.blogspot.de

Our work focuses on the development of novel algorithms to solve
challenging problems in quantum physics

Approximating Functionals of MPOs

Algorithm
Algorithm 1: Approximation Algorithm

Input : MPO A[DA] ∈ CN×N , Orthogonal MPO U [Dinit] ∈ CN×N , Number of
Dimensions K, Maximal Bond-Dimension Dmax, Stopping Criteria S

1 U0← U ;
2 for i← 1; i ≤ K do
3 Ui, Ti← orthonormalize(A,Ui−1, Dmax) ;
4 V ΛV ∗← spectralDecomposition(Ti) ;
5 Gf ← β2

1e
T
1 V f (Λ)V ∗e1 ;

6 if checkStop(Gf,Λ,S) then
7 break ;
8 end
9 end

Output: Approximation Gf of Trf (A)

Background
•Can we approximate functions Trf (A) like the entropy or the trace norm?
• Key idea: project MPO onto small, explicitly storable matrix
•Use Krylov basis of MPOs generated by U,AU,A2U, · · · , AK−1U

• Starting MPO U is orthogonal and of the same dimensions as A
• Projection yields tridiagonal matrix TK ∈ RK×K that is given by

TK =


α1 β2 0
β2 α2

. . .
. . . . . . βK

0 βK αK


• Problem can be reformulated such that TK is intimately related to Gauss quadrature

•We find that it holds Trf (A) = Tr(U∗f (A)U) =
∫ b
a f (λ)dµ(λ) ≈ eT1 f (TK)e1
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Optimizing Dynamical Decoupling

Algorithm
Algorithm 2: Optimization Algorithm

Input : Number of initial models: n, Number of models to keep: k,
Percentage of data: p, Set of possible topologies: M, Size of data: d

1 D ← generateRandomData(d) ;
2 D, 〈ςs〉 ← keepBestData(D,p) ;
3 M ← trainRandomModels(n, D,M) ;
4 M ← keepBestKModels(M,k) ;
5 while 〈ςs〉 not converged do
6 M ← trainBestModels(D) ;
7 D ← generateDataFromModels(M, d) ;
8 D, 〈ςs〉 ← keepBestData(D,p) ;
9 end

Output: 〈ςs〉, D,M

Background
•Can we learn to generate good dynamical decoupling sequences?
• Assuming no access to fidelity measure except for effcient evaluation
•Conjecture: RNNs can learn structure of and generate good sequences
• The fidelity measure we would like to optimize is defined as

D(U, I) =

√
1− 1

dSdB
‖TrS(U)‖Tr

• Piecewise constant, finite strength control Hamiltonian with Pauli gates
• Ansatz: use sequence data to train RNNs, use RNNs to generate better data
•We use the cross entropy as error function for RNN-training

CE(m, {i}) = −
∑
t

δst,i log pm,i(st−1, . . . , s1)

Results
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