Chains of nonlinear and tunable superconducting resonators

• Michael C. Fischer^{1,2,3}, Peter Eder^{1,2,3}, Jan Goetz^{1,2}, Stefan Pogorzalek^{1,2}, Edwar Xie^{1,2,3}, Michael J. Hartmann⁴, Kirill G. Fedorov^{1,2}, Frank Deppe^{1,2,3}, Achim Marx¹ and Rudolf Gross^{1,2,3}

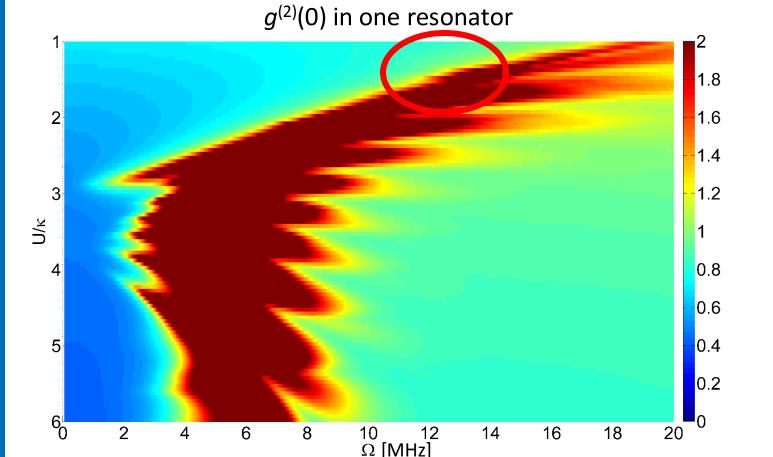
¹Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany ²Physik-Department, TU München, 85748 Garching, Germany ³Nanosystems Initiative Munich (NIM), 80799 München, Germany ⁴Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh, United Kingdom

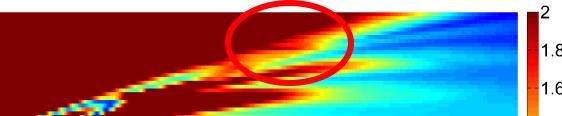
Motivation

- **Quantum simulation** as a tool to investigate quantum mechanical phenomena
- System of **coupled nonlinear resonators** already implemented in different architectures
- Realization in **circuit QED** architecture allows access to the **driven dissipative** regime

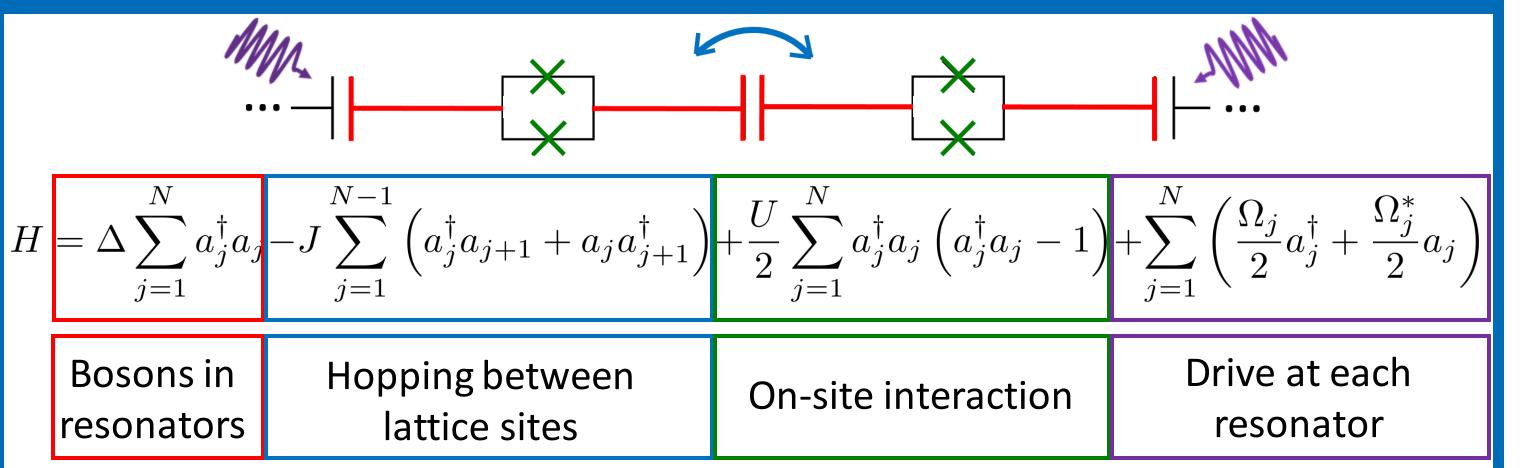
Optimal working point

Influence of the **drive amplitude** on the correlation functions and transmission at constant detuning $\Delta = -1$ MHz:





Theory



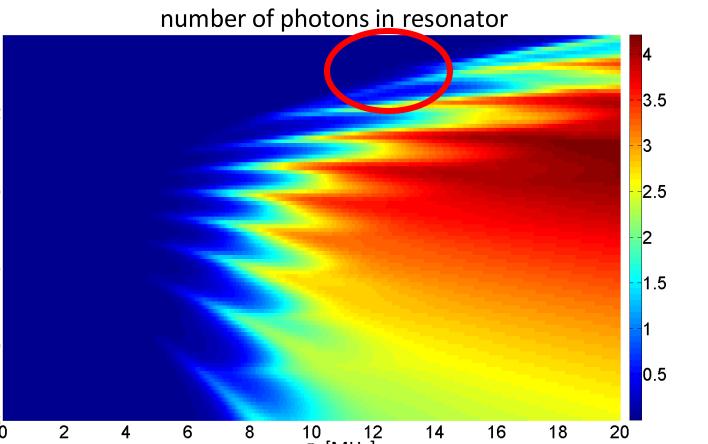
First step: Two-resonator system with one drive.

Correlation function of photons in one resonator and cross correlation between two resonators:

$$g^{(2)}(0) = \frac{\left\langle a^{\dagger}a^{\dagger}aa\right\rangle}{\left\langle a^{\dagger}a\right\rangle^{2}}$$

$$\operatorname{cross} g^{(2)}(0) = \frac{\left\langle a_1^{\dagger} a_1 a_2^{\dagger} a_2 \right\rangle}{\left\langle a_1^{\dagger} a_1 \right\rangle \left\langle a_2^{\dagger} a_2 \right\rangle}$$

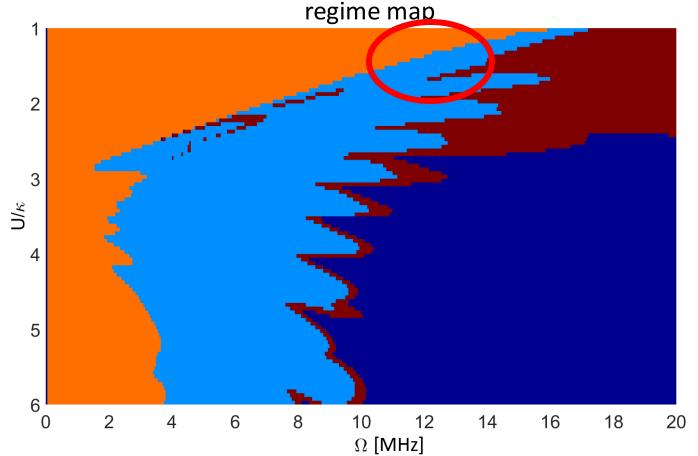
 $g^{(2)}(0) = 1$ corresponds to a **classical** field, $g^{(2)}(0) < 1$ to an **antibunched** field and $g^{(2)}(0) > 1$ to a **bunched** field.



Possible working area (red circle):

- transition between regimes of
- different correlation properties
- sufficient transmission through resonator system to access the signal

1.2 Ω [MHz]

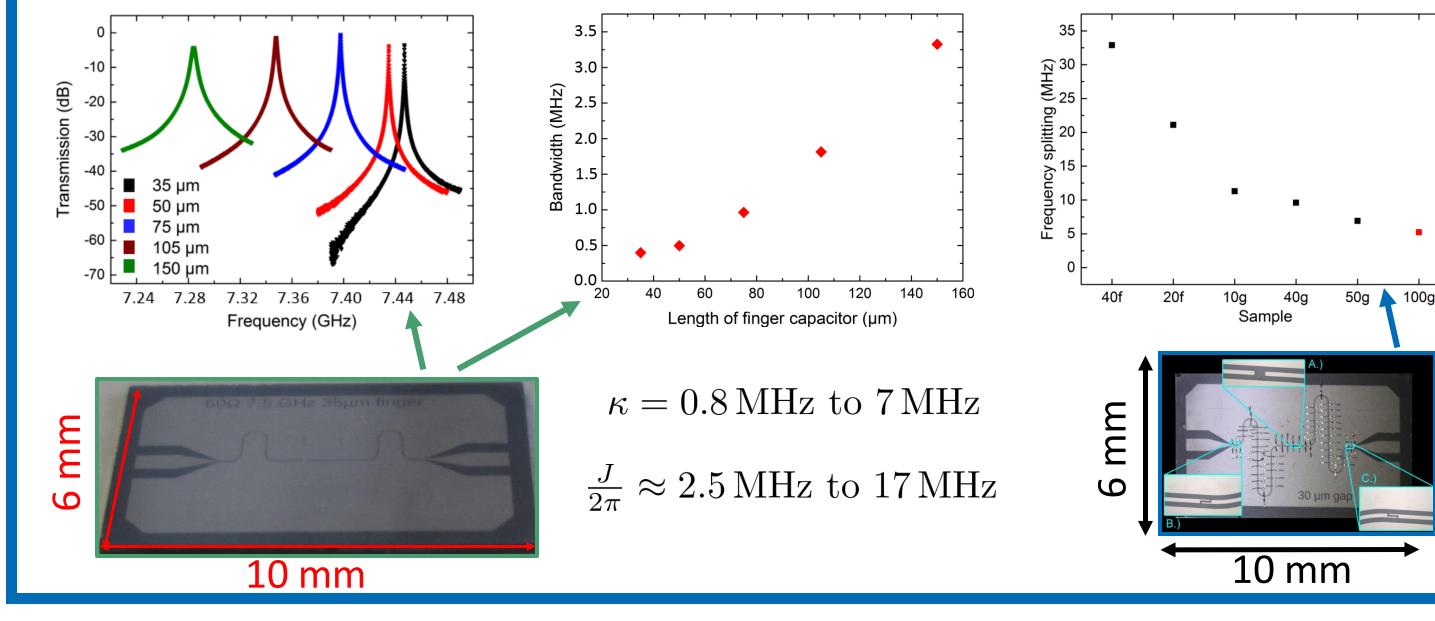


 $g^{(2)}(0) > 1$ (bunched) and cross $g^{(2)}(0) > 1$ (bunched) $g^{(2)}(0) < 1$ (antibunched) and cross $g^{(2)}(0) < 1$ (antibunched) $g^{(2)}(0) < 1$ (antibunched) and cross $g^{(2)}(0) > 1$ (bunched) $g^{(2)}(0) > 1$ (bunched) and cross $g^{(2)}(0)$ (antibunched)

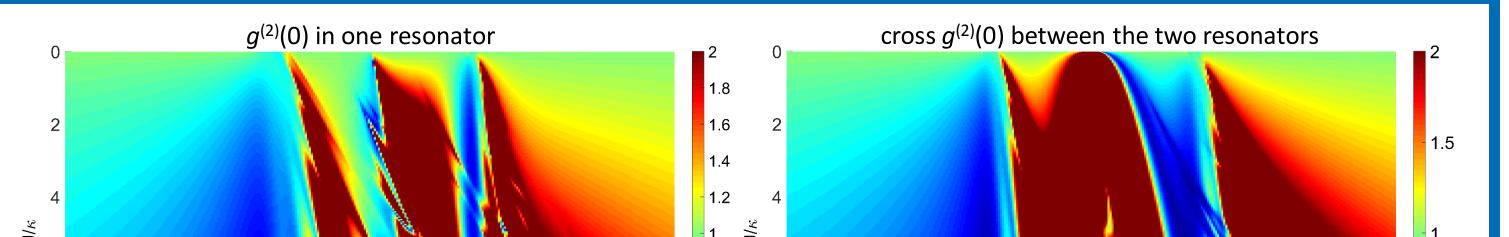
Parameters used for all calculations: $J/2\pi = 10$ MHz, $\kappa = 1$ MHz For calculations with **constant drive amplitude**: $\Omega = 1$ MHz (see bottom left box) For calculations with **constant detuning**: $\Delta = -1$ MHz

Experimentally accessible parameters

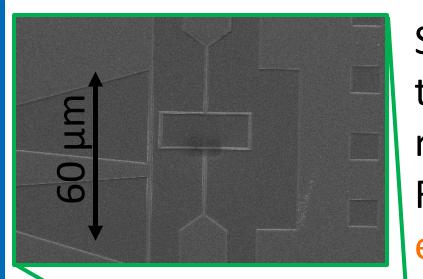
Experimental characterization of **single** and **double resonators**:



Theoretical calculations



Sample design



0.5

15

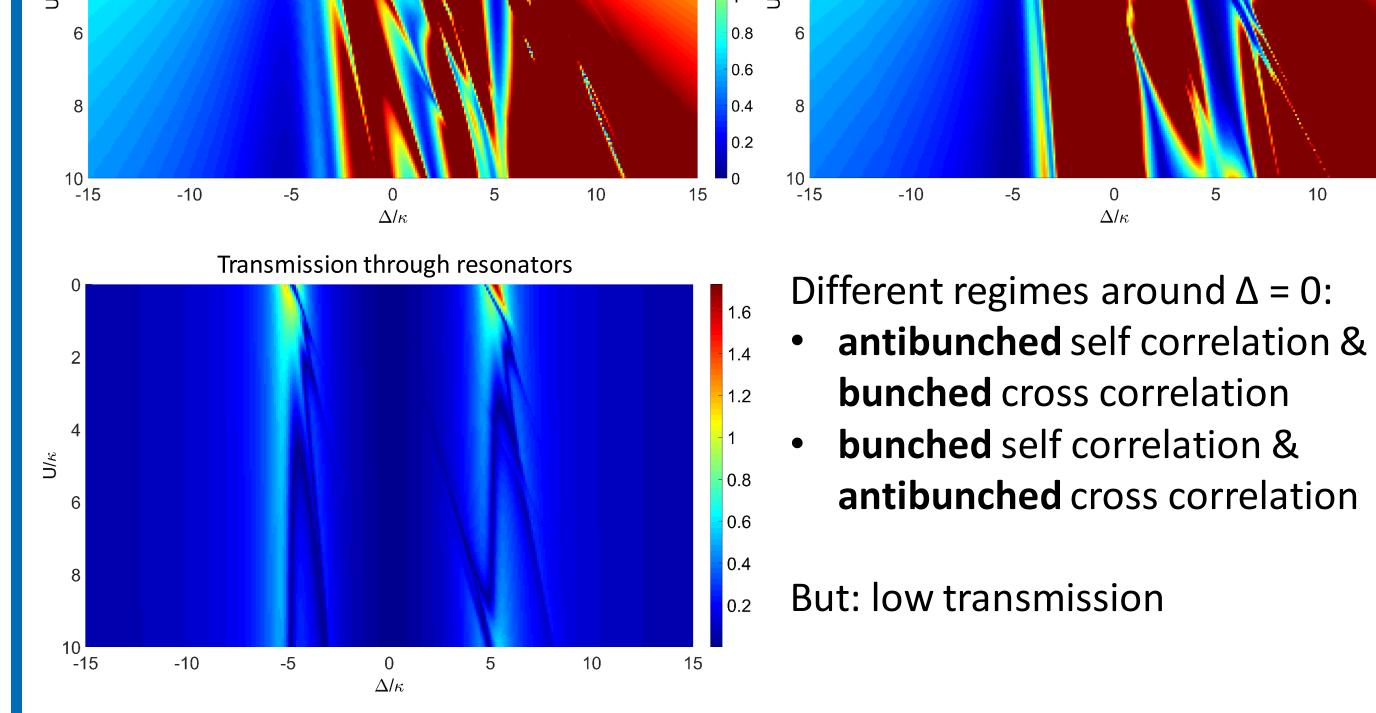
10

Sample chip contains **two resonators** with a **DC-SQUID** at the current antinode of the fundamental mode of each resonator.

Resonators are capacitively coupled to outside ports and to each other via finger capacitors.

> Two **antennas** allow for **tuning** of the critical current of the SQUIDs to tune $U/2\pi$ from 1 to 12 MHz. **DC-SQUID design parameters:** $I_{c,\text{tot}} = 350 \,\text{nA}$

 $I_1 = 228 \,\mathrm{nA}$ $I_2 = 122 \,\mathrm{nA}$ $A_{\rm SQUID} = 24\,\mu{\rm m} \times 10\,\mu{\rm m}$



Conclusion & Outlook

- Theoretical calculations show **bunched** and **antibunched** behavior both in the self and cross correlation functions of the resonators.
- Calculations of the transmission through a two-resonator system and first measurements of single and double resonator structures show an **accessible** working point.
- Next steps: characterization of the sample and measurement of the correlation functions.

www.wmi.badw.de