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The information-disturbance tradeoff describes the inevitable disturbance caused to a quantum system when information is gained through a measurement. It can be cast as a
special case of a more general problem, in which we consider the problem of approximate simultaneous realisations of two arbitrary (and not necessary compatible) quantum
operations. In general this leads to a trade-off where increasing quality of one operation necessarily decreases the quality of the other. We prove that a tight trade-off bound
on the quality of the two approximate simultaneous realisations (when measured in terms of the cb norm) can be computed in terms of a semi-definite program (SDP). For the
special case of the information-disturbance tradeoff, the resulting SDP allows us to obtain analytic results for binary von Neumann measurements.

Setting and distance measures

Consider systems on a finite dimensional Hilbert space H = Cd.
Quantum state Every quantum state is described by a density matrix ρ ∈ Md

with Tr [ρ] = 1 and ρ ≥ 0.
Quantum channel A transformation of a quantum state is described by a quan-

tum channel, which is a linear completely positive trace preserving map
T :Md→Md′.

POVM A discrete observable P is described by a positive-operator valued mea-
sure (POVM), characterised by positive operators

P := {Pk ∈Md}mk=1 , satisfying
0 ≤ Pk ≤ I ∀k and
m∑
k=1

Pk = I.

Instrument A general measurement scheme is represented by an instrument I,
which is characterised by completely positive linear maps

I := {Ik :Md→Md′}mk=1 , satisfying
m∑
k=1

I∗k(I) = I.

ρ {Ik}mk=1
Ik(ρ)

Tr[Ik(ρ)]

k with probability

Tr [Ik(ρ)] = Tr [I∗k(I)ρ]

An instrument therefore comprises a quantum channel and a POVM. If we
ignore the measurement outcome, the instrument I acts as a quantum channel,∑
k Ik. If we ignore the quantum state of the output, the instrument I acts as

a POVM, {I∗k(I)}.
The goal of this project is to completely characterise the set of all achiev-
able information disturbance combinations and thus determine its boundary, the
information-disturbance tradeoff.
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‖∑m
k=1 Ik − id‖�

‖Pk − I∗k(I)‖∞

no disturbance
+

no info gain

high disturbance
+

perfect measurement

Fix a POVM P := {Pk}mk=1 and consider an instrument I := {Ik}mk=1.
1 The distance measure quantifying the information gained from the quantum sys-
tem when performing the measurement {I∗k(I)}, in comparison to the measure-
ment {Pk} is

d1 (Pk, I∗k(I)) = sup
ρ
|Tr [ρPk]− Tr [I∗k(I)ρ]| = ‖Pk − I∗k(I)‖∞ ∀k.

This is the worst case over all quantum states ρ of the difference of the probabil-
ities for a specific measurement outcome k to occur regarding the measurements
{Pk} and {I∗k(I)}.

2 The distance measure quantifying the disturbance caused to the quantum system∑
k Ik in comparison to the identity channel id is

d2

 m∑
k=1

Ik, id
 = sup

ρ

∥∥∥∥∥∥
m∑
k=1

Ik ⊗ id(ρ)− id(ρ)
∥∥∥∥∥∥1 =

∥∥∥∥∥∥
m∑
k=1

Ik − id
∥∥∥∥∥∥� .

We compare the pre-measurement quantum state to the post-measurement quan-
tum state.

Optimisation problem

Task (?)

Compute for a given POVM P and λ ∈ [0, 1] :

min
∥∥∥∥∥∥id−

m∑
k=1

Ik

∥∥∥∥∥∥�
s.t. ‖I∗k(I)− Pk‖∞ ≤ λ ∀k,

Ik is c.p. and
m∑
k=1

I∗k(I) = I ∀k.

Results

Theorem (?)

For a given POVM P and λ ∈ [0, 1], the optimisation specified in Task (?) can
be formulated as an SDP (φ,C,D), where φ : Md → Md′ is a hermiticity
preserving map, C = C∗ ∈ Md and D = D∗ ∈ Md′, with the primal and the
dual SDP problem given as follows

max Tr [CX ] = min Tr [DY ]
s.t. φ(X) = D s.t. φ∗(Y ) ≥ C

X ≥ 0 Y = Y ∗
Slater-type

strong
duality holds

Figure 1: The set of achievable information disturbance combinations for a fixed binary von Neumann
measurement P = {P, I− P}. The information-disturbance tradeoff is given by an ellipse

d2

 m∑
k=1

Ik, id
 ≥ 1− 2

√
d1 (Pk, I∗k(I))− (d1 (Pk, I∗k(I)))

2.
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