

Information-Disturbance Tradeoff

Anna-Lena K. Hashagen & Michael M. Wolf

Fakultät Mathematik Technische Universität München hashagen@ma.tum.de

The information-disturbance tradeoff describes the inevitable disturbance caused to a quantum system when information is gained through a measurement. It can be cast as a special case of a more general problem, in which we consider the problem of approximate simultaneous realisations of two arbitrary (and not necessary compatible) quantum operations. In general this leads to a trade-off where increasing quality of one operation necessarily decreases the quality of the other. We prove that a tight trade-off bound on the quality of the two approximate simultaneous realisations (when measured in terms of the cb norm) can be computed in terms of a semi-definite program (SDP). For the special case of the information-disturbance tradeoff, the resulting SDP allows us to obtain analytic results for binary von Neumann measurements.

Setting and distance measures

Consider systems on a finite dimensional Hilbert space $\mathcal{H} = \mathbb{C}^d$.

Quantum state Every quantum state is described by a density matrix $\rho \in \mathcal{M}_d$ with $\text{Tr} [\rho] = 1$ and $\rho \geq 0$.

Quantum channel A transformation of a quantum state is described by a quantum channel, which is a linear completely positive trace preserving map

$$T: \mathcal{M}_d \to \mathcal{M}_{d'}$$
.

POVM A discrete observable \mathcal{P} is described by a positive-operator valued measure (POVM), characterised by positive operators

$$\mathcal{P} := \{P_k \in \mathcal{M}_d\}_{k=1}^m$$
, satisfying $0 \le P_k \le \mathbb{I} \ \forall k \text{ and}$
$$\sum_{k=1}^m P_k = \mathbb{I}.$$

Instrument A general measurement scheme is represented by an instrument \mathcal{I} , which is characterised by completely positive linear maps

$$\mathcal{I} := \{I_k : \mathcal{M}_d \to \mathcal{M}_{d'}\}_{k=1}^m, \text{ satisfying}$$

$$\sum_{k=1}^m I_k^*(\mathbb{I}) = \mathbb{I}.$$

$$\rho \longrightarrow \underbrace{\{I_k\}_{k=1}^m}_{\mathbb{T}[I_k(\rho)]} \xrightarrow{\mathrm{Tr}[I_k(\rho)]}$$

$$k \text{ with probability}$$

$$\mathrm{Tr}\left[I_k(\rho)\right] = \mathrm{Tr}\left[I_k^*(\mathbb{I})\rho\right]$$

An instrument therefore comprises a quantum channel and a POVM. If we ignore the measurement outcome, the instrument \mathcal{I} acts as a quantum channel, $\Sigma_k I_k$. If we ignore the quantum state of the output, the instrument \mathcal{I} acts as a POVM, $\{I_k^*(\mathbb{I})\}$.

The goal of this project is to completely characterise the set of all achievable information disturbance combinations and thus determine its boundary, the information-disturbance tradeoff.

Fix a POVM $\mathcal{P} := \{P_k\}_{k=1}^m$ and consider an instrument $\mathcal{I} := \{I_k\}_{k=1}^m$.

The distance measure quantifying the information gained from the quantum system when performing the measurement $\{I_k^*(\mathbb{I})\}$, in comparison to the measurement $\{P_k\}$ is

$$d_1(P_k, I_k^*(\mathbb{I})) = \sup_{\rho} |\operatorname{Tr}[\rho P_k] - \operatorname{Tr}[I_k^*(\mathbb{I})\rho]| = ||P_k - I_k^*(\mathbb{I})||_{\infty} \quad \forall k.$$

This is the worst case over all quantum states ρ of the difference of the probabilities for a specific measurement outcome k to occur regarding the measurements $\{P_k\}$ and $\{I_k^*(\mathbb{I})\}$.

The distance measure quantifying the disturbance caused to the quantum system $\sum_k I_k$ in comparison to the identity channel id is

$$d_2\left(\sum_{k=1}^m I_k, \operatorname{id}\right) = \sup_{\rho} \left\|\sum_{k=1}^m I_k \otimes \operatorname{id}(\rho) - \operatorname{id}(\rho)\right\|_1 = \left\|\sum_{k=1}^m I_k - \operatorname{id}\right\|_{\diamond}.$$

We compare the pre-measurement quantum state to the post-measurement quantum state.

Optimisation problem

Task (\star)

Compute for a given POVM \mathcal{P} and $\lambda \in [0, 1]$:

$$\min \left\| \operatorname{id} - \sum_{k=1}^{m} I_{k} \right\|_{\diamond}$$
s.t. $\|I_{k}^{*}(\mathbb{I}) - P_{k}\|_{\infty} \leq \lambda \quad \forall k,$

$$I_{k} \text{ is c.p. and}$$

$$\sum_{k=1}^{m} I_{k}^{*}(\mathbb{I}) = \mathbb{I} \quad \forall k.$$

Results

Theorem (\star)

For a given POVM \mathcal{P} and $\lambda \in [0, 1]$, the optimisation specified in Task (\star) can be formulated as an SDP (ϕ, C, D) , where $\phi : \mathcal{M}_d \to \mathcal{M}_{d'}$ is a hermiticity preserving map, $C = C^* \in \mathcal{M}_d$ and $D = D^* \in \mathcal{M}_{d'}$, with the primal and the dual SDP problem given as follows

$$\max \operatorname{Tr} [CX] = \min \operatorname{Tr} [DY]$$
 s.t. $\phi(X) = D$ Slater-type
$$X \geq 0$$
 Slater-type
$$\operatorname{strong}$$
 duality holds

Figure 1: The set of achievable information disturbance combinations for a fixed binary von Neumann measurement $\mathcal{P} = \{P, \mathbb{I} - P\}$. The information-disturbance tradeoff is given by an ellipse

$$d_2\left(\sum_{k=1}^m I_k, \text{id}\right) \ge 1 - 2\sqrt{d_1(P_k, I_k^*(\mathbb{I})) - (d_1(P_k, I_k^*(\mathbb{I})))^2}.$$

Literature

- 1 S. Boyd and L. Vandenberghe, *Convex Optimization*, Cambridge University Press, New York, USA, 2004.
- 2 C. A. Fuchs, Information Gain vs. State Disturbance in Quantum Theory, Wiley Verlag, 2005.

 2 D. Kratashasara, D. Caldin games and D. E. Warmen. The Information Disturbance of The deeff and
- 3 D. Kretschmann, D. Schlingemann and R. F. Werner, *The Information-Disturbance Tradeoff and the Continuity of Stinespring's Representation*, arXiv:quant-ph/0605009, 2006.
- 4 L. Maccone, Information-disturbance tradeoff in quantum measurements, Phys. Rev. A 73, 042307, 2006.

