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Tensor Networks
Tensor
Maps from product space of input spaces to lin-
ear combinations of elements of product space
of output spaces:
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Tensor Networks
Decomposition of large tensor (e.g. Hamiltonian
matrix) into smaller tensors with implied tensor
contraction:
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Abelian Symmetries
Tensors on spaces with good quantum numbers
(e.g. particle number) should conserve them:1
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⇒ Tij;op = 0

Nonabelian Symmetries
Tensors on spaces with non-abelian symme-
tries should preserve relations between different
states (treat Sz = ±1/2 of S = 1/2 doublet
the same).2,3 Decompose Tij;op into reduced and
symmetry-protected tensors:

Tij;op → TRrirj ;rorp

NS⊗
s=1

T ssisj ;sosp

⇒ much smaller reduced tensor TR and very
sparse symmetry-protected tensors T s

DMRG
. 1-D/MPS case: Write state (Hamiltonian) as
Matrix Product State (Operator)

. Variationally optimise state sequentially and
locally to find lowest eigenstate4,5

. Requires MPO rep of Hamiltonian

. DMRG3S6 also generalises as Tensor Product
State-DMRG to all loop-free tensor network
topologies, using Tensor Product Operators
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Problem Setting
. DMRG requires Matrix Product Operator
(MPO) rep

Ĥ =
∑
στ

Wσ1τ1
1 ·Wσ2τ2

2 · · ·WσLτL
L |τ 〉〈σ| (1)

. Generalised DMRG (e.g. on binary tree ten-
sor networks) requires Tensor Product Oper-
ator (TPO) rep of Ĥ

. Construction of these reps with smallest pos-
sible matrices Wσiτi

i by hand is hard
. Many algorithmic approaches cannot con-
struct generic operators

. Many algorithmic approaches get extremely
complicated quickly

Generic Construction Method
Overview
. Define single-site TPOs by hand (easy)
. Implement addition, multiplication and scalar
products of TPOs

. Use compression (similar to MPS compression
with SVD) to achieve most efficient TPO rep

. With operator overloading in OOP, construc-
tion similar to usual formulaic expressions

Single-Site Operators
. MPO rep of e.g. ŝzi straightforward:

. k < i: Wk = 1d

. k = i: Wk = sz

. k > i: Wk = 1d
. If quantum numbers are used, left- and right
identities may have to be different (labels are
Sz quantum numbers):
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Arithmetic Operations
. Addition of two TPOs increases bond dimen-
sion to the sum of the input bond dimensions

. Multiplication of two TPOs increases bond di-
mension to product of input bond dimensions

. Compression necessary to reduce bond dimen-
sion again and achieve optimal representation

Compression Methods
Deparallelisation (DPL)
. Attempts to find parallel rows/columns in Wi

. Often reproduces analytical form

. Works for simple MPOs, results in efficient
reps for complicated MPOs

Rescaled SVD
. Like SVD for MPS, but rescales S (MPO not
normalised to 1)

. Always results in optimal representation

. Sparse structure of many MPOs lost

. Discards exponentially small contributions
(e.g. 1̂ + P̂|↑···↑〉 ≈ 1̂)

. Works well for most Hamiltonians

Delinearisation (DLN)
. More powerful variant of Deparallelisation
. Expresses rows and columns as sums of
previously-kept rows and columns

. Usually results in optimal representation

. Keeps even exponentially small terms

. Keeps sparse structure of MPO

Example Constructions
Nearest-Neighbour Heisenberg Chain
. S =1 /2-chain, Ĥ =

∑L−1
i=1 Ŝi · Ŝi+1

. Sum of scalar products of single-site operators

. Deparallelisation reproduces analytical result
and optimal, constant bond dimension:
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. Small powers of Ĥ can be constructed
(bond dimensions and sparsity for DLN):
Ĥn 1 2 3 4 5 6
SVD: 5 9 16 32 51 64
DLN: 5 9 16 32 51 81
DLN: 81% 84% 82% 89% 88% 88%
Fit:7 5 9 16 32 51 79

2-D Fermi-Hubbard in Hybrid Space
. Fourier Transformation from real to mome-
tum space along rotational cylinder axis

. Very complicated interactions after mapping
of 2-D cylindrical lattice to 1-D MPS chain

. Construction by hand impossible, using Finite
State Machines8 very complicated

. DLN, SVD give same result, DPL suboptimal
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Proof of Principle: Full QC Hamiltonian
. Ĥ = Vijkl

∑
στ=↑↓

∑L
ijkl ĉ

†
iσ ĉ
†
kτ ĉlτ ĉjσ

. Construction very costly, O(L6) time at least,
possible up to L ≈ 30.

. SVD still optimal, DPL nearly optimal
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Outlook
. Method allows construction of any operator,
both as MPO and TPO

. Very flexible, new interactions or terms no
challenge after initial implementation

. Underlying implementation can handle
arbitrary-rank tensors & symmetries

. Extension to true 2-D tensor networks (PEPS,
MERA etc.) possible

. Very useful for DMET and DMFT solvers,
need algorithmic construction of TPOs

. Improvement of compression methods still
possible: always-optimal and sparsity-
preserving?


