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snsor Networks

Tensor
Maps from product space of input spaces to lin-
ear combinations of elements of product space
of output spaces:
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Tensor Networks

Decomposition of large tensor (e.g. Hamiltonian
matrix) into smaller tensors with implied tensor
contraction:
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Abelian Symmetries
Tensors on spaces with good quantum numbers
(e.g. particle number) should conserve them:!
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Nonabelian Symmetries
Tensors on spaces with non-abelian symme-
tries should preserve relations between different
states (treat S* = £!/5 of S = '/, doublet
the same).** Decompose Tj;.,, into reduced and
symmetry-protected tensors:

Ngs
Wty — T2 T?
Llsee TiT§;ToTp SiSj;S0Sp
s=1

= much smaller reduced tensor 7' and very
sparse symmetry-protected tensors 1

> 1-D/MPS case: Write state (Hamiltonian) as
Matrix Product State (Operator)

> Variationally optimise state sequentially and
locally to find lowest eigenstate®®

> Requires MPO rep of Hamiltonian

> DMRG3S® also generalises as Tensor Product
State-DMRG to all loop-free tensor network
topologies, using Tensor Product Operators
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oblem Setting

DMRG requires Matrix Product Operator
(MPO) rep
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Generalised DMRG (e.g. on binary tree ten-
sor networks) requires Tensor Product Oper-
ator (TPO) rep of H

Construction of these reps with smallest pos-
sible matrices W.*" by hand is hard

Many algorithmic approaches cannot con-
struct generic operators

Many algorithmic approaches get extremely
complicated quickly

eneric Construction Method

Overview

> Define single-site TPOs by hand (easy)

> Implement addition, multiplication and scalar
products of TPOs

> Use compression (similar to MPS compression
with SVD) to achieve most efficient TPO rep

> With operator overloading in OOP, construc-
tion similar to usual formulaic expressions

Single-Site Operators
> MPO rep of e.g. 57 straightforward:
> k <1 W =14
> k = 1: Wk =
> k> W =14
> If quantum numbers are used, left- and right
identities may have to be different (labels are

S% quantum numbers):
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Arithmetic Operations

> Addition of two TPOs increases bond dimen-
sion to the sum of the input bond dimensions

> Multiplication of two TPOs increases bond di-
mension to product of input bond dimensions

> Compression necessary to reduce bond dimen-
sion again and achieve optimal representation

ompression Methods

Deparallelisation (DPL)

> Attempts to find parallel rows/columns in W;

> Often reproduces analytical form

> Works for simple MPOs, results in efficient
reps for complicated MPOs

Rescaled SVD
Like SVD for MPS, but rescales S (MPO not
normalised to 1)
Always results in optimal representation
Sparse structure of many MPOs lost
Discalids Aexponent}ally small contributions
(e.g. 1+ Py.py = 1)
Works well for most Hamiltonians

Delinearisation (DLIN)

> More powerful variant of Deparallelisation
Expresses rows and columns as sums of
previously-kept rows and columns
Usually results in optimal representation
Keeps even exponentially small terms
Keeps sparse structure of MPO

xample Constructions

Nearest-Neighbour Heisenberg Chain

> S =! /y-chain, H = ZZL 11 St . it

> Sum of scalar products of single-site operators

> Deparallelisation reproduces analytical result
and optimal, constant bond dimension:

MPO bond dimension
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Bond number / (L-2)

> Small powers of H can be constructed
(bond dimensions and sparsity for DLN):

H™ 1 2 3 4 5 6
SVD: 5 9 16 32 51 64
DLN: 5 9 16 32 51 81
DLN: | 81% 84% 82% 89% 88% 88%
Fit:” 5 9 16 32 51 79

2-D Fermi-Hubbard in Hybrid Space

> Fourier Transformation from real to mome-
tum space along rotational cylinder axis

> Very complicated interactions after mapping
of 2-D cylindrical lattice to 1-D MPS chain

> Construction by hand impossible, using Finite
State Machines® very complicated

> DLN, SVD give same result, DPL suboptimal
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Cylinder width W

Proof of Principle: Full QC Hamiltonian

> H V;Jkl ZO’T =11 Z’L]kl ZJC/JLTélTéJU

> Construction very costly, O(L°) time at least,
possible up to L ~ 30.

> SVD still optimal, DPL nearly optimal
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System Length L

Method allows construction of any operator,
both as MPO and TPO

Very flexible, new interactions or terms no
challenge after initial implementation
Underlying implementation can
arbitrary-rank tensors & symmetries

handle

Extension to true 2-D tensor networks (P:
MERA etc.) possible

Very useful for DMET and DMEFT solvers,
need algorithmic construction of TPOs
Improvement of compression methods still

possible: always-optimal and sparsity-

preserving?!



