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Abstract}

Quantum state tomography became the standard
tool for fully determining unknown quantum states.
However, in experiments, one often obtains density
matrices with at least one negative eigenvalue. Since
the eigenvalues of a density operator are associated
with probabilities, this poses a serious conceptual
problem. In principle, numerical procedures like
maximum likelihood estimation (MLE) or least
squares (LS) fitting allow to overcome this problem,
yet, only at the prize of distorted results due to biased

\state estimation [1,2].
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The question arises how unphysical solutions can be
avoided. Contrary to frequent folklore, bad experiments
and misalignment are surely not the only reasons.
we demonstrate how statistical
unavoidably causes unphysical estimates. It is shown
overcomplete Pauli tomography
scheme typical Poissonian or multinomial measurement
the distribution of eigenvalues for large
number of qubits can be described by the Wigner
semicircle distribution [3] where the radius depends on
the total number of measurements [4].

Already for small system size (a small numbers of\
qubits) this semicircle distribution can be used as an
adequate approximation. We can now specify how
likely an unphysical solution is or alternatively can
give a minimum number of measurements necessary
to avoid an unphysical result.

Based on that, knowing the distribution of
eigenvalues now enables both a new ansatz to obtain
a physical density matrix from an unphysical estimate
as well as to analyze possible misalignment or
colored noise by hypothesis testing [4]. /

Here,
noise alone almost

/[Wigner semicircle distribution | N
e Maximally Mixed State

e use maximally mixed state (white noise):

1 1
e overcomplete Pauli scheme: Omm = 5,00,0,..0 = 5

project onto all e.igensfcates of tensor «2"-fold degenerate eigenvalue 1on
products of Pauli matrices 7, 7y.c- o suitable to study effect of statistics onto

e Quantum State Estimation [5]

e simulations to avoid experimental artefacts

e set of 6" frequencies (normalized counts): eigenvalues
F5 = /N, * (approximative) model given by
Wigner semicircle function
e linearly reconstructed density matrix with A} 9 .
given by reconstruction scheme: fer() = —5 4/ (z =) — R?

e appropriate description solely depends
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/[Experimental application
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e Six-Qubit Tomography [6]

1
Dg”) = 55 ([000111) + [001011) - - 4 [111000)] » Spectrum of ideal state: {0,0,...,0,1}
Linear optical setup to observe the state Dés)
n 5050 6833 5050 _ e Spectrum of measured state:
/6@’—6 |L||: B BS1$ 8825 BS; I {_0064, _0062, _0059, L
== 2xYVO, 0.064, 0.072, 0.149, 0.216, 0.610}
| 880766:33
. . H—7 5050 L » Fidelity with respect to ideal state: 60.4%
HWP PBSPAJ BS
’If D » Check hypothesis:
QWP ZAPD Can distribution of eigenvalues be explained
- J

by statistics and random matrix theory?

e Linearly reconstructed state = e Random Matrix Theory based

Reconstruction

e Real part of density matrix e Data of experimental six qubit Dicke state

Real part of density matrix
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/[ Necessary statistics for 0> 0 }

e Mixed and pure states

» Noise model: Mixture of pure target state |¢)
with white noise:

gy = q|) (Y] + (1 — ) 0mm

>

e Probability for physicality
e Physicality 0> O:
all eigenvalues are non-negative

o Estimate distribution of smallest eigenvalue

« Center ¢, of noise spectrum shifted: with Gaussian approximation

1 —gq
|

* Mean value n/2
5 /1
M)\IQC—R—|—2O')\1:C—2(6> N+20A1

e Standard deviation
9 n+2 9 n+2 5 n/2 1
= (m) 7= (m) 2() Vs

» Probability for smallest eigenvalue
being positive

Cqg =

» Radius of distribution of noise eigenvalues
remains unchanged

e Increasing statistics (N) shrinks radius R

*When is radius R smaller than center c?
All eigenvalues expected to be positive

410" — 1) /2" —1\° p(A1 > 0) = 1— exp (—(A — Ml)Q)d)\
N> N, = 200" 1) ( - ) m% 202
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e Example (six qubit state) .
- R . noise spectrum
enoisy n=6 qubits GHZ state " a) f\ 1 b)8 i
B . _ [ b 1.8 % ;
»q=0.8 amplitude _ 8”“"’” m"’h
for GHZ state ~ 106 A
0.01F E, 0.000 0.002 0.004 0.006
emodel: N,=132921 r loa g
events per setting . [
o simulation for N, % 19
95.9% physical states 0.001f o = L B
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/[ Obtaining a physical state |

e Estimate the physical rank

o Can empirical distribution of eigenvalues
be described by Wigner semicircle
distribution?

» p-values for the first hypotheses

; _ rank r | center ¢ |radius R P-value | P.g-value

e Hypotheses: ,smallest 2 -r eigenvalues ol 0.0156251 0.076317| 9.44 . 106 0
are noise and thus follow Wigner 11 0.006137] 0.075719 0.0089 0
semicircle distribution” 2| 0.002803] 0.075115|  0.3553 0
. . . 3| 0.000399| 0.074507|1 —8-10~"|1 —8-10~"

.;I;)h;é?,\’, g?ggmﬁaelsmeamng attributed 1]—0.000790] 0.073894]  0.9998 0
5/—0.001883| 0.073275 0.9976 0

e Determine p-values for quantifying

validity of hypotheses e empirical and cumulative distribution functions

e use Anderson-Darling test [y m———
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oFor r < 3 eigenvalues outside of support
of semicircle are found

-----------------------------

eFor r > 3 semicircle is centered around
negative values

 Rejection of hypotheses for r # 3

» Detection of systematic deviations:
stateisnotrank r =1, butr = 3

., . . (o A
0.15 020 /70.60 0.65

» Obtain state by taking eigenstates of
r = J largest eigenvalues and
average rest of eigenvalues

A

/[Conclusions & Outlook |

e Semicircle distribution describes spectrum of maximally mixed state in limit of many qubits
» Already applicable for only few qubits to describe noise spectrum in practical states
e Estimate necessary amount of data and probability for obtaining physical states
o Useful for detection of systematic deviations like misalignments or colored noise
\- Applicable for state estimation by means of identifying deviations solely due to statistics /
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