Topological Charge Pumping and Artificial Gauge Fields
With Ultracold Atoms Iin Optical Superlattices
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Introduction

" Motivation: Probe topological phases of matter in the presence of
large magnetic fields (e.g. quantum Hall effect)

" Ultracold atoms in optical lattices as a clean and well controlled
model system to study physics in regimes not accessible in typical
condensed matter systems

" Implement artificial magnetic fields for ultracold neutral atoms

" Topological charge pumping as a tool to study higher dimensional
quantum Hall physics

Artificial Gauge Fields

" Charge neutrality prevents direct application of Lorentz force in an
external magnetic field

" Implementation of artificial gauge potentials by engineering of
position-dependent complex tunneling amplitudes K |et?
(Aharonov-Bohm phase) using laser-assisted tunneling in a tilted
optical potential
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On-site modulation with position-dependent phases

" Effective time-averaged Hamiltonian in high-frequency
limit » >

> ( )

Uniform effective magnetic flux per 2x2 plaquette
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" Measurement of currents: ‘
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" 2D square lattice in a uniform artificial magnetic field
" Magnetic unit cell contains multiple sites and the lowest Bloch band
splits into separate sub-bands which are topologically non-trivial
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" Measurement of the transverse Hall response by applying a
longitudinal gradient
" Atoms perform Bloch oscillations and acquire anomalous velocity
in the orthogonal direction which is proportional to the Berry
curvature
" Quantized transport for filled/uniformly populated bands
characterized by Chern number
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Meissner Effect in Bosonic Ladders

" Quasi-1D ladder systems in the presence of a uniform artificial
gauge field
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" Ground state exhibits chiral current in analogy to the Meissner effect
In a type-1l superconductor

Phase diagram of the flux ladder
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Topological Charge Pumping

" Transport of charge through adiabatic periodic variation of the
underlying Hamiltonian (even in insulating systems)

" For filled bands, the transported charge is quantized and related to
a topological invariant, the Chern number, of the pumping process

" The transported charge is purely determined by the topology of the
pump cycle and robust against perturbations

" n=1/2 Mott insulator in a 1D superlattice potential: pumping by
adiabatic variation of the superlattice phase M

{ Quantized displacement }
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" Charge pumping in 1D superlattice o dynamical version of the
2D integer quantum Hall effect: variation of M equivalent to
perpendicular electric field

Spin Pumping

" Pumping with spin-dependent modulation: transport of spins
without charge transport

" Hardcore bosons in two hyperfine states: spin chain with dimerized
superexchange coupling and spin-dependent tilt
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" Realization of a similar model with a global magnetic field gradient
that is topologically equivalent in the limit of isolated double wells

" Direct measurement of spin currents in optical lattices by
projection onto static double wells

0 oscillations of the spin imbalance
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Outlook: Charge Pumping in 2D
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" Simulate 4D quantum Hall
effect by charge pumping =t
In a tilted 2D superlattice
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