
●  Motivation:  Probe topological phases of matter in the presence of
    large magnetic fields (e.g. quantum Hall effect)

●  Ultracold atoms in optical lattices as a clean and well controlled
    model system to study physics in regimes not accessible in typical
    condensed matter systems

●  Implement artificial magnetic fields for ultracold neutral atoms

●  Topological charge pumping as a tool to study higher dimensional
    quantum Hall physics
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●  Simulate 4D quantum Hall
    effect by charge pumping
    in a tilted 2D superlattice 

     → non-linear Hall response
         characterized by 2nd 
         Chern number

●  Small atom cloud as
    local probe of charge
    transport

●  Measure transverse
    response when pumping
    along orthogonal
    direction

Meissner Effect in Bosonic Ladders

Topological Charge Pumping
●  Transport of charge through adiabatic periodic variation of the
    underlying Hamiltonian (even in insulating systems)

●  For filled bands, the transported charge is quantized and related to
    a topological invariant, the Chern number, of the pumping process

●  The transported charge is purely determined by the topology of the 
    pump cycle and robust against perturbations

●  n=1/2 Mott insulator in a 1D superlattice potential: pumping by
    adiabatic variation of the superlattice phase ϕ

●  Adiabatic evolution of eigenstate

    →  anomalous velocity

●  Homogeneously populated band

Harper-Hofstadter Model

Artificial Gauge Fields

References

Outlook: Charge Pumping in 2D

Introduction

●  Charge neutrality prevents direct application of Lorentz force in an
    external magnetic field

●  Implementation of artificial gauge potentials by engineering of
    position-dependent complex tunneling amplitudes              
    (Aharonov-Bohm phase) using laser-assisted tunneling in a tilted
    optical potential

●  Effective time-averaged Hamiltonian in high-frequency
    limit                   : 

●  Cyclotron orbits of single atoms in isolated
    2x2 plaquettes
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●  Quasi-1D ladder systems in the presence of a uniform artificial 
    gauge field

●  Ground state exhibits chiral current in analogy to the Meissner effect
    in a type-II superconductor

    Phase diagram of the flux ladder

●  Measurement of currents:
    Projection onto isolated double
    wells

●  Oscillation between even and odd
    sites with amplitude propotional to
    current
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●  2D square lattice in a uniform artificial magnetic field

●  Magnetic unit cell contains multiple sites and the lowest Bloch band
    splits into separate sub-bands which are topologically non-trivial

●  Measurement of the transverse Hall response by applying a
    longitudinal gradient

●  Atoms perform Bloch oscillations and acquire anomalous velocity
    in the orthogonal direction which is proportional to the Berry
    curvature

●  Quantized transport for filled/uniformly populated bands
    characterized by Chern number
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●  Charge pumping in 1D superlattice → dynamical version of the
    2D integer quantum Hall effect: variation of ϕ equivalent to
    perpendicular electric field

Spin Pumping
●  Pumping with spin-dependent modulation: transport of spins
    without charge transport

●  Hardcore bosons in two hyperfine states: spin chain with dimerized
    superexchange coupling and spin-dependent tilt

●  Realization of a similar model with a global magnetic field gradient
    that is topologically equivalent in the limit of isolated double wells

●  Direct measurement of spin currents in optical lattices by
    projection onto static double wells

    → oscillations of the spin imbalance 

●  Integrated spin current inde-
    pendent of exchange coupling
    unlike instantaneous current 

 ●  Separation of the spins‘
     center-of-mass position
     without charge transport
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